## Advance Information

## 8-BIT MICROPROCESSOR

The MC6803E is an 8-bit microprocessing unit (MPU) designed for uses in which the internal clock needs to be synchronized with systems, peripherals, or other MPUs. The MC6803E also supports DMA and dynamic RAM refresh with its halt ( $\overline{\mathrm{HALT}}$ ) and bus available (BA) pins. The MC6803E has all the features of the MC6801 microcomputer unit except on-chip ROM and an on-chip oscillator. These on-chip features include 128 bytes of RAM, a serial communications interface (SCI), parallel I/O, and a three-function programmable timer. The MC6803E has the same enhanced MC6800 features as the MC6801, which include 64 K addresss space, two 8 -bit accumulators (which can be concatenated into one 16 -bit accumulator), and the enhanced instruction set, as well as extra internal interrupts.

- Enhanced MC6800 Instruction Set
- Upward Source and Object Code Compatible with the MC6800
- Bus Compatible with the M6800 Family
- Direct Source and Object Code Compatible with the MC6801
- $8 \times 8$ Multiply Instruction
- 64 K Memory Map (Unused High Order Address Lines Can Be Used as Input Lines)
- External Clock Inputs (E and AS) Allow Synchronization
- DMA Capability (Clock Stretching) with HALT and BA Pins
- Serial Communications Interface (SCI)
- 16-Bit, Three-Function Programmable Timer
- 128 Bytes of RAM
- 64 Bytes of RAM Retainable During Power Down
- Pin-for-Pin Compatible with MC6801 Except for $\overline{\text { HALT }}$ and BA Pins

ORDERING INFORMATION $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

| Package Type | Frequency | Order Number |
| :--- | :---: | :---: |
| Plastic | 1.0 MHz | MC6803EG |
| G Suffix | 1.25 MHz | MC6803EG-1 |
| Ceramic | 1.0 MHz | MC6803EL |
| L Suffix | 1.25 MHz | MC6803EL-1 |

## HMOS

(HIGH-DENSITY N-CHANNEL, SILICON-GATE)

## 8-BIT <br> MICROPROCESSOR



PIN ASSIGNMENT


*The output at this pin (P21) comes from the timer and not a data register.

MAXIMUM RATINGS

| Rating | Symbol | Value | Unit |
| :--- | :---: | :---: | :---: |
| Supply Voltage | $\mathrm{V}_{\mathrm{CC}}$ | -0.3 to +7.0 | V |
| Input Voltage | $\mathrm{V}_{\text {in }}$ | -0.3 to +7.0 | V |
| Operating Temperature Range | $\mathrm{T}_{\mathrm{A}}$ | 0 to 70 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $\mathrm{T}_{\text {stg }}$ | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |

THERMAL CHARACTERISTICS

| Characteristic | Symbol | Value | Rating |
| :--- | :---: | :---: | :---: |
| Thermal Resistance |  |  |  |
| Plastic | $\theta_{J A}$ | 50 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Ceramic |  | 50 |  |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper opera tion it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S} \leq\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leq V_{C C}$ Input protection is enhanced by connecting unused inputs to either $V_{D D}$ or $V_{S S}$

## POWER CONSIDERATIONS

The average chip-junction temperature, $T J$, in ${ }^{\circ} \mathrm{C}$ can be obtained from:

$$
\begin{aligned}
& T_{J}=T_{A}+\left(P_{D} \bullet \theta J A\right) \\
& \text { Where: }
\end{aligned}
$$

$T_{A} \equiv$ Ambient Temperature, ${ }^{\circ} \mathrm{C}$
$\theta_{J A} \equiv$ Package Thermal Resistance, Junction-to-Ambient, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
$P_{D} \equiv$ PINT + PPORT
PINT $\equiv I_{C C} \times V_{C C}$, Watts - Chip Internal Power
PPORT $\equiv$ Port Power Dissipation, Watts - User Determined
For most applications PPORT $<$ PINT and can be neglected. PPORT may become significant if the device is configured to drive Darlington bases or sink LED loads.

An approximate relationship between $P_{D}$ and $T_{J}$ (if PPORT is neglected) is:

$$
\begin{equation*}
P D=K \div\left(T J+273^{\circ} \mathrm{C}\right) \tag{2}
\end{equation*}
$$

Solving equations 1 and 2 for $K$ gives:

$$
\begin{equation*}
K=P_{D} \cdot\left(T_{A}+273^{\circ} \mathrm{C}\right)+\theta J A \cdot P_{D}{ }^{2} \tag{3}
\end{equation*}
$$

Where $K$ is a constant pertaining to the particular part. $K$ can be determined from equation 3 by measuring $P_{D}$ (at equilibrium) for a known $T_{A}$. Using this value of $K$ the values of $P_{D}$ and $T_{J}$ can be obtained by solving equations (1) and (2) iteratively for any value of $\mathrm{TA}_{\mathrm{A}}$

DC ELECTRICAL CHARACTERISTICS $\left(V_{C C}=5.0 \vee d C \pm 5 \% V_{S S}=0, T_{A}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$ unless otherwise noted)

| Characteristic | Symbol | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input High Voltage | $V_{\text {EIH }}$ | $V_{C C}-0.75$ |  | $\mathrm{V}_{\mathrm{CC}}$ | V |
| Input Low Voltirge | $\mathrm{V}_{\text {EIL }}$ | $\mathrm{V}_{\text {SS }}-0.3$ |  | $\mathrm{V}_{\text {SS }}+06$ | V |
| Input High Voltage $\quad \begin{gathered}\overline{\text { RESET }} \\ \\ \text { Other Inputs }\end{gathered}$ | $\mathrm{V}_{\text {I }}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{SS}}+4.0 \\ & \mathrm{~V}_{S S}+2.0 \end{aligned}$ |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}} \\ & \hline \end{aligned}$ | V |
|  | $V_{\text {IL }}$ | $\mathrm{V}_{\mathrm{SS}}-0.3$ |  | $\mathrm{V}_{\text {SS }}+0.8$ | V |
| $\begin{aligned} & \text { Input Leakage Current } \\ & \left(\mathrm{V}_{\text {in }}=0.0525 \mathrm{~V}\right)\end{aligned} \quad \overline{\text { HALT }}, \mathrm{AS}, \overline{\text { NMI }}, \overline{\text { IRQ1 }}, \overline{\mathrm{RESET}}$ | $\mathrm{l}_{\text {in }}$ |  | 1.5 | 2.5 | $\mu \mathrm{A}$ |
| Hi $Z$ Input Current $\left.\left(V_{\text {in }}\right)=0.5102 .4 \mathrm{~V}\right)$ | 'TS! | -- | 2.0 | 10 | $\mu \mathrm{A}$ |
| Output High Voltage <br> (load: $100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{min}$ ) | VOH | $V_{\text {SS }}+2.4$ |  |  | $v$ |
| Outpur Low Voltage (I load $2.0 \mathrm{~mA}, \vee_{C C}{ }^{-}$min) All Outputs | Vol |  |  | $V_{S S}+0.5$ | V |
| Darlington Drive Current $\left(\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}\right)$$\quad$ P10-P17 | ${ }^{\mathrm{I}} \mathrm{OH}$ | 1.0 | 1.5 | 5.0 | mA |
| Internal Power Dissipation (Measured at $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ in Steady-State Operation) | PINT | - |  | 1200 | mW |
| Input Capacitance $\left(V_{\text {in }}=0, T A \quad 25^{\prime \prime} \mathrm{C}, \mathrm{t}_{\mathrm{o}}=1.0 \mathrm{MHz}\right)$ | $\mathrm{Cin}_{\text {in }}$ | - |  | $\begin{aligned} & 12.5 \\ & 10.0 \end{aligned}$ | pF |
| $V_{\text {CC Standty }}$ Power Down <br>  Power Up | $\begin{aligned} & \mathrm{V}_{S B B} \\ & V_{S B} \\ & \hline \end{aligned}$ | $\begin{gathered} 4.0 \\ 4.75 \end{gathered}$ |  | $\begin{aligned} & 5.25 \\ & 5.25 \\ & \hline \end{aligned}$ | V |
| Standby Current Power Down | ISBB | - |  | 6.0 | mA |

*Except mode programming levels; see Figure 8.

PERIPHERAL PORT TIMING (Reter to Figures 1 and 2)

| Characteristics | Symbol | Min | Typ | Max |
| :--- | :---: | :---: | :---: | :---: |
| Peripheral Data Setup Time | Unit |  |  |  |
| Peripheral Data Hold Time | tPDH | 200 | - |  |
| Delay Time, Enable Negative Transition to Peripheral Data Valid <br> Ports 1,2 | IPWD | - | - | - |
| Delay Time, Enable: Negative Transition to Peripheral CMOS Data Valid | ns |  |  |  |

FIGURE 1 - DATA SETUP AND HOLD TIMES (MPU READ)


FIGURE 2 - DATA SETUP AND HOLD TIMES (MPU WRITE)


NOTES:

1. 10 k pullup resistor required for port 2 to reach $0.7 \mathrm{~V}_{\mathrm{CC}}$
2. Not applicable to P21.

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted

FIGURE 3 - CMOS LOAD
FIGURE 4 - TIMING TEST LOAD PORTS 1, 2, 3, 4


BUS TIMING (See Notes 1 and 2)

| Ident. <br> Number | Characteristics | Symbol | MC6803E |  | MC6803E-1 |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |
| 1 | Cycle Time | ${ }^{\text {t }} \mathrm{Cyc}$ | 1.0 | 2.0 | 0.8 | 2.0 | $\mu \mathrm{S}$ |
| 2 | Pulse Width, E Low | PWFI | 430 | 1000 | 360 | 1000 | ns |
| 3 | Pulse Width, E High | PW ${ }_{\text {EH }}$ | 450 | 1000 | 360 | 1000 | ns |
| 4 | Clock Rise and Fall Time | $\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{t}}$ | - | 25 | -- | 25 | ns |
| 9 | Non Muxed Address Hold Time | ${ }^{\text {t }} \mathrm{AH}$ | 20 | - | 20 | - | ns |
| 11 | Address Delay From E Low | ${ }^{\text {t }}$ AD | - | 260 | $\cdots$ | 220 | ns |
| 17 | Read Data Setup Time | t DSR | 80 | - | 70 | -- | ns |
| 18 | Read Data Hold Time | t DHR | 10 | -- | 10 | - | ns |
| 19 | Write Data Delay Time | tDDW | - | 225 | -- | 200 | ns |
| 21 | Write Data Hold Time | tow | 20 | - | 20 | - | ns |
| 23 | Muxed Address Delay from AS | tadm | -- | 90 | $\ldots$ | 70 | ns |
| 25 | Muxed Address Hold Time | ${ }_{\text {t }}{ }^{\text {AHL }}$ | 20 | - | 20 | - | ns |
| 26 | Delay Time E to AS Rise | tasD | 100 | -- | 80 | - | ns |
| 27 | Pulse Width, AS High | PWASH | 220 | -- | 170 | - | ns |
| 28 | Delay Time AS to E Rise | ${ }^{\text {t }}$ ASED | 100 | - | 80 | -- | ns |
| 29 | Usable Access Time (See Note 4) | tacc | 635 | - | 485 | - | ns |
|  | Enable Rise Time Extended | tere | - | 80 | -- | 80 | ns |
|  | Processor Control Setup Time | tPCS | 200 | - | 200 | $\cdots$ | ns |
|  | Processor Control Hold Time | tpCH | 20 | 40 | 20 | 40 | ns |
|  | Bus Available Delay Time from Enable Low | ${ }^{\text {t }} \mathrm{BA}$ | 0 | 300 | 0 | 300 | ns |
|  | HALT Rise and Fall Time | tPCf, tPCr | 0 | 100 | 0 | 100 | ns |

FIGURE 5 - BUS TIMING DIAGRAM


## INTRODUCTION

The MC6803E is an MC6801 microcomputer unit without the internal oscillator or the on-chip ROM. The MC6803E is used in the applications in which synchronization to another device or system is needed, or in which clock stretching is a requirement (i.e., direct memory access or dynamic RAM refresh). At reset, the MC6803E is configured into one of two operating modes to control the various functions associated with the memory map. These operating modes are the expanded multiplexed modes of the MC6801 (2 and 3).
The MC6803E has one 10 -bit port, two 8 -bit ports, and one 5 -bit port. Each port except port 3 and port 4 consists of at least a write-only data direction register and a data register. The data direction register is used to define whether corresponding bits in the data register are configured as an input (clear) or output (set).

The term "port," by itself, refers to all of the hardware associated with the port. When the port is used as a "data port" or an "I/O port," it is controlled by the port data direction register and the programmer has direct access to the port pins using the port data register. Port 3 functions as a time multiplexed address/data bus and does not contain either a data direction register or a data register. Port 4 functions as a non-multiplexed high order address bus and does not contain either a data direction register or a data register. Port pins are labeled as Pii, where i identifies one of four ports and j indicates the particular bit.

The MC6803E is an enhanced MC6800 MPU with additional capabilities and greater throughput. It is directly source and object code compatible with the MC6801 and upward source and object code compatible with the MC6800. The programming model is shown in Figure 6. A list of the new instructions available on the MC6803E, in addition to the M6800 instruction set, are given in Table 1.

FIGURE 6 - PROGRAMMING MODEL


TABLE 1 - NEW INSTRUCTIONS

| Instruction | Description |
| :---: | :--- |
| ABX | Unsigned addition of accumulator B to index register |
| ADCD | Adds /without carry) the double accumulator to memory and leaves the sum in the double accumulator |
| ASLD or LSLD | Shifts the double accumulator left (towards MSB) one bit; the LSB is cleared and the MSB is shifted into the C bit |
| BHS | Branch if higher or same; unsigned conditional branch (same as BCC) |
| BLO | Branch if lower; unsigned conditional branch (same as BCS) |
| BRN | Branch never |
| JSR | Additional addressing mode: direct |
| LDD | Loads double accumulator from memory |
| LSL | Shifts memory or accumulator left (towards MSB) one bit; the LSB is cleared and the MSB is shifted into the C bit |
|  | Isame as ASL) |
| LSRD | Shifts the double accumulator right (towards LSB) one bit; the MSB is cleared and the LSB is shifted into the C bit |
| MUL | Unsigned multiply; multiplies the two accumulators and leaves the product in the double accurnulator |
| PSHX | Pushes the index register to stack |
| PULX | Pulls the index register from stack |
| STD | Stores the double accumulator to memory |
| SUBD | Subtracts memory from the double accumulator and leaves the difference in the double accumulator |
| CPX | internal processing modified to permit its use with any conditional branch instruction |

## OPERATING MODES

The MC6803E has two operating modes (modes 2 and 3). The operating modes are hardware selectable, determining the device memory map. The mode numbers are referred to as 2 and 3 for consistency with the MC6801 and because that is the binary value applied to the mode programming pins during reset. (See PROGRAMMING THE MODE.)

A 64K byte memory space is available in both operating modes. In modes 2 and 3, port 4 provides address lines A8 to A15.

Port 3 functions as a time multiplexed address/data bus with address valid on the negative edge of address strobe (AS) and data valid while $E$ is high. Address strobe can be used to control a transparent D-type latch to capture addresses A0-A7, as shown in Figure 7. This allows port 3 to function as a data bus when $E$ is high.

Figure 8 depicts a typical operating configuration.

## PROGRAMMING THE MODE

The operating mode is determined at reset by the levels asserted on P20 and P21. These levels are lached into the

PC1 and PC0 bit locations of the program control register on the positive edge of RESET. The operating mode may be read from the port 2 data register as shown below, and programming levels and timing must be met as shown in Figure 9. Characteristics and a brief outline of the operating modes are shown in Tables 2 and 3

## PORT 2 DATA REGISTER

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | PC1 | PC0 | P24 | P23 | P22 | P21 | P20 |

Circuitry to provide the programming levels is dependent primarily on the normal system usage of P20 and P21. It configured as outputs, the circuit shown in Figure 10 may be used; otherwise, three-state buffers can be used to provide isolation while programming the mode

FIGURE 7 - TYPICAL LATCH ARRANGEMENT


FIGURE 8 - EXPANDED MULTIPLEXED CONFIGURATION


NOTE: To avoid data bus (port 3 ) contention in the expanded multiplexed modes, memory should be enabled only during E high time.

FIGURE 9 - MODE PROGRAMMING TIMING


MODE PROGRAMMING (Refer to Figure 9)

| Characteristic | Symbol | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Mode Programming Input Voltage Low | $\mathrm{V}_{\mathrm{MPI}}$ | -- | 1.8 | $V$ |
| Mode Programming Input Voltage High | $\mathrm{V}_{\mathrm{MPH}}$ | 4.0 | -- | $\checkmark$ |
| Mode Programming Diode Differential (If Diodes are Used) | $\checkmark$ MPDD | 0.6 | - | V |
| RESET Low Pulse Width | PWRSTL | 3.0 |  | E Cycles |
| Mode Programming Setup Time | tMPS | 2.0 | - | E Cycles |
| Mode Programming Hold Time <br> RESET Rise lime $\geq 1 \mu \mathrm{~s}$ <br> RESET RIse Time $<1 \mu \mathrm{~S}$ | ${ }_{\text {TMPH }}$ | 0 100 |  | nS |

## TABLE 2 - SUMMARY OF MC6803E OPERATING MODES

## Memory Space Options ( 64 K Address Space)

Mode 2 - Internal RAM
Mode 3 - No Internal RAM

TABLE 3 - MODE SELECTION SUMMARY

| Mode | $\begin{aligned} & \mathrm{P} 21 \\ & \mathrm{PC} 1 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{P} 20 \\ & \mathrm{PCO} \\ & \hline \end{aligned}$ | RAM | Interrupt Vectors | Bus <br> Mode | Operating Mode |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | H | H | E | E | MUX | Multiplexed/No RAM |
| 2 | H | L | 1 | E | mux | Multiplexed/RAM |
| 1 | L | H |  |  |  | Undefined* |
| 0 | L | L |  |  |  | Undefined* |

Legend:
I ... Internal
$L-$ Logic 0
$E-$ External $\quad H-$ Logic 1
MUX - Multiplexed

* These modes are undefined for the MC6803E; device should not be operated in these modes.

FIGURE 10 - TYPICAL MODE PROGRAMMING CIRCUIT


NOTES

1. Mode 3 as shown
2. $R 2 \cdot C=$ reset time constant
3. $\mathrm{R} 1=10 \mathrm{k}$ (typical)
4. $D=1 \mathrm{~N} 914,1$ N4001 (typical)
5. Diode $V_{f}$ should not exceed $V_{M P D D}$ min

## MEMORY MAPS

The MC6803E can provide up to 64 K bytes of address space. A memory map for each operating mode is shown in

Figure 11. The first 32 locations of each map are reserved for the internal register area, as shown in Table 4, with exceptions as indicated.

FIGURE 11 - MC6803E MEMORY MAPS


| Register | Address <br> (Hex) |
| :--- | :---: |
| Port 1 Data Direction Register | 00 |
| Port 2 Data Direction Register* | 01 |
| Port 1 Data Register | 02 |
| Port 2 Data Register | 03 |
| External Memory | 04 |
| External Momory | 05 |
| External Memory | 06 |
| External Memory | 07 |
| Timer Control and Status Register | 08 |
| Counter (High Byte) | 09 |
| Counter (Low Byte) | 0 A |
| Output Compare Register (High Byte) | 0 B |
| Output Compare Register (Low Byte) | 0 C |
| Input Capture Register (High Byte) | 00 |
| Input Capture Register (Low Byte) | $0 E$ |
| External Memory | 0 F |
| Rate and Mode Control Register | 10 |
| Transmit/Receive Control and Status Register | 11 |
| Receive Data Register | 12 |
| Transmit Data Register | 13 |
| RaM Control Register | 14 |
| Reserved | $15 \cdot 1 \mathrm{~F}$ |

1 = Output, $0=$ Input

## MC6803E INTERRUPTS

The MC6803E supports two types of interrupt requests: maskable and non maskable. A non-maskable interrupt (NMI) is always recognized and acted upon at the completion of the current instruction. Maskable interrupts are controlled by the condition code register I bit and by individual enable bits. The I bit controls all maskable interrupts. Of the maskable interrupts, there are two types: $\overline{\mathrm{RQ} 1}$ and $\overline{\mathrm{RO} 2}$ The programmable timer and serial communications interface use an internal $\overline{\mathrm{RQ2}}$ interrupt line, as shown in the block diagram. External devices use $\overline{\mathrm{RQ} 1}$. An $\overline{\mathrm{RQ} 1}$ interrupt is serviced before $\overline{\mathrm{RO} 2}$ if both are pending.

All $\overline{\mathrm{RO} O 2}$ interrupts use hardware prioritized vectors. The single SCl interrupt and three timer interrupts are serviced in a prioritized order and each is vectored to a separate location. All interrupt vector locations are shown in Table 5

The interrupt flowchart is depicted in Figure 12 and is common to every interrupt excluding reset. During interrupt servicing, the program counter, A accumulator, B accumulator, and condition code register are pushed onto the stack. The I bit is set to inhibit maskable interrupts and a vector is

TABLE 5 - MCU INTERRUPT VECTOR LOCATIONS

| MSB | LSB | Interrupt |
| :--- | :--- | :--- |
| FFFE | FFFF | RESET |
| FFFC | FFFD | NMI |
| FFFA | FFFB | Sot tware Interrupt (SWI) |
| FFF8 | FFF9 | IRQ1 |
| FFF6 | FHF | ICF (Input Capture)* |
| FFF4 | FFF5 | OCF (Output Compare)* |
| FFF2 | FFF3 | TOF (Timer Overflow)* |
| FFF0 | FFF1 | SCI (RDRF + ORFE + TDRE)* |

TRQ2 Interrupt
fetched corresponding to the current highest priority interrupt. The vector is transferred to the program counter and instruction execution is resumed Interrupt and RESET timing are illustrated in Figures 13 and 14.

## FUNCTIONAL PIN DESCRIPTIONS

## $V_{C C}$ AND $V_{S S}$

$V_{C C}$ and $V_{S S}$ provide power to a large portion of the MPU. The power supply should provide +5 volts ( $\pm 5 \%$ ) to $V_{C C}$, and $V_{S S}$ should be tied to ground. Total power dissipation (including $V_{C C}$ standby) will not exceed $P_{D}$ milliwatts.

## VCc STANDBY

$V_{\text {CC }}$ standby provides power to the standby portion ( $\$ 80$ through \$BF) of the RAM and the STBY PWR and RAME bits of the RAM control register. Voltage requirements depend on whether the device is in a power-up or power-down state. In the power-up state, the power supply should provide +5 volts $( \pm 5 \%)$ and must reach $V_{S B}$ volts before $\overline{R E S E T}$ reaches 4.0 volts. During power down, $V_{C C}$ standby must remain above $V_{S B B}$ (minimum) to sustain the standby RAM and STBY PWR bit. While in power down operation, the standby current will not exceed ISBB.

It is typical to power both $V_{C C}$ and $V_{C C}$ standby from the same source during normal operation. A diode must be used between them to prevent supplying power to $V_{C C}$ during power-down operation. $V_{C C}$ standby should be tied to ground in mode 3.

## AS (ADDRESS STROBE)

Address strobe is an input strobe used to strobe out the least significant byte of an address on the 8 bit multiplexed bus. The AS line is used to demultiplex the eight least significant bits from the data bus


FIGURE 13 - INTERRUPT SEQUENCE


FIGURE 14 - $\overline{\text { RESET TIMING }}$


## HALT

This level sensitive active low input causes the MPU to halt all activity when a low is applied to it. When the $\overline{\mathrm{HALT}}$ input is low, the machine stops at the end of an instruction and bus available (BA) goes to a high state. During this time read/write ( $R / \bar{W}$ ) is high and the address bus displays the address of the next instruction. See Figure 15 for timing requirements.

To debug programs, it is advantageous to step through programs one instruction at a time. To do this, HALT must be brought high for one clock cycle and then returned low as shown in Figure 15. The instruction illustrated is a one byte, two cycle instruction, such as CLRA. When the HALT line goes low, the MC6803E is halted after completing execution of the current instruction.

## BA (BUS AVAILABLE)

This active high output is used to indicate when the MC6803E is halted. Other devices may then use the address and data buses, providing care is taken to prevent contention on the address and data bus. Alternatives include threestate buffers on the address and data buses, or three-state buffers on the address bus and holding AS low during BA high.

## R/W (READ/WRITE)

The $R / \bar{W}$ output is used to indicate the direction of data transfer on the data bus. A logic low indicates that the MPU is writing data onto the bus and a logic high indicates that the MPU is reading data from the bus


## $\overline{\text { RESET }}$

This input is used to reset the internal state of the device and provide an orderly start-up procedure. During power up, $\overline{R E S E T}$ must be held below 0.8 volts until 1) VCC reaches 4.75 volts and E is stable, and 2 ) until $\mathrm{V}_{\mathrm{CC}}$ standby reaches 4.75 volts. $\overline{\text { RESET }}$ must be held low at least three $E$ cycles if asserted during power-up operation. During the rising edge of $\overline{\text { RESET, }}$, the MC6803E also latches in its operating mode. $\overline{\text { RESET timing is shown in Figure } 14 .}$

## E (ENABLE)

This is an input clock used primarily for address and data bus synchronization. This input should have some provision to obtain the specified logical high level which is greater than standard TTL levels. Two examples of clock generating circuits are presented in Figures 16 and 17.

Enable is the primary MC6803E system timing signal and all timing data specified as cycles is assumed to be referenced to this clock unless otherwise noted.


## $\overline{\mathrm{NMI}}$ (NON-MASKABLE INTERRUPT)

$A_{n} \overline{N M I}$ negative edge requests an MPU interrupt se quence, but the current instruction will be completed before it responds to the request. The MPU will then begin an interrupt sequence. Finally, a vector is fetched from \$FFFC and \$FFFD, transterred to the program counter, and instruction execution is resumed. $\overline{\text { NMI }}$ typically requires a 3.3 kilohm (nominal) resistor to $\mathrm{VCC}_{\mathrm{C}}$. There is no internal $\overline{\mathrm{NMI}}$ pullup resistor. $\overline{\text { NMI }}$ must be held low for at least one E cycle to be recognized under all conditions.

## IRQ1 (MASKABLE INTERRUPT REQUEST 11

$\overline{\mathrm{RQ1}}$ is a level sensitive input which can be used to request an intorrupt sequence. The MPU will complete the current instruction before it responds to the request. If the interrupt mask bit (I bit) in the condition code register is clear, the

MPU will begin an interrupt sequence. A vector is fetched from \$FFF8 and \$FFF9, transterred to the program counter, and instruction execution is resumed.
$\overline{\mathrm{RQ} 1}$ typicaly requires an external 3.3 kilohm (nominal) resistor to $V_{C C}$ for wire-OR applications. $\overline{\mathrm{RO1}}$ has no internal pullup resistors.

## P10-P17 (PORT 1)

Port 1 is a mode independent 8 -bit $1 / O$ port with each line an input or output as defined by the port 1 data direction register. The TTL compatible three state output buffers can drive one Schottky TTL load and 30 picolarads, Darlington transistors, or CMOS devices using external pullup resistors. It is configured as a data input port during reset. Unused lines can remain unconnected.

FIGURE 17 - CLOCK CIRCUIT EXAMPLE 2
Schematic


Timing


## P20-P24 (PORT 2)

Port 2 is a mode-independent, 5 -bit, multipurpose $1 / 0$ port. The voltage levels present on P 20 and P 21 on the rising edge of $\overline{R E S E T}$ determine the operating mode of the MPU. The entire port is then configured as a data input port. The port 2 lines can be selectively configured as data output lines by setting the appropriate bits in the port 2 data direction register. The port 2 data register is used to move data through the port. However, if P21 is configured as an output, it will be tied to the timer output compare function and cannot be used to provide output from the port 2 data register
Port 2 can also be used to provide an interface for the serial communications intertace and one of the timer input edge functions. These configurations are described in PRO-
GRAMMABLE TIMER and SERIAL COMMUNICATIONS INTERFACE

The port 2 three-state TTL-compatible output buffers are capable of driving one Schottky TTL load and 30 picofarads, or CMOS devices using external pullup resistors

## PORT 2 DATA REGISTER

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | PC1 | PCO | P24 | P23 | P22 | P21 | P20 |

## P30-P37 (PORT 3)

Port 3 consists of a time multiplexed address (A7-A0) and data bus (D7 D0) where address strobe (AS) can be used to domultiplex the two buses. The port is held in a highimpedance state between valid address and data to prevent bus conflicts. The TTL-compatible three-state output buffers can drive one Schottky TTL load and 90 picofarads

## P40-P47 (PORT 4)

Port 4 functions as half of the address bus and provides A8 to A15. Port 4 can drive one Schọttky TTL load and 90 picofarads and is the only port with internal pullup resistors. Unused lines can remain unconnected.

## RESIDENT MEMORY

The MC6803E provides 128 bytes of on-board RAM. One half of the RAM is powered through the VCC standby pin and is maintainable during $V_{C C}$ power down. This standby portion of the RAM consists of 64 bytes located from $\$ 80$ through \$BF

Power must be supplied to VCC standby if the internal RAM is to be used, regardless of whether standby power operation is anticipated

The RAM is controlled by the RAM control register

## RAM CONTROL REGISTER (\$14)

The RAM control register includes two bits which can be used to control RAM accesses and determine the adequacy of the standby power source during power-down operation. It is intended that RAME be cleared and STBY PWR be set as part of a power down procedure.

## RAM CONTROL REGISTER

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STBY <br> PWR | RAME | $\times$ | $\times$ | $\times$ | $\times$ | $\times$ | $X$ |

Bit 0-5 Not used.

Bit 6 RAM Enable (RAME)
This read/write bit can be used to remove the entire RAM from the internal memory map. RAME is set (enabled) during reset provided standby power is available on the positive edge of RESET. If RAME is clear, any access to a RAM address is external. If RAME is set and not in mode 3, the RAM is included in the internal map.

Bit 7 Standby Power (STBY PWR). This bit is a read/ write status bit which, when cleared, indicates that $V_{\text {CC }}$ standby has decreased sufficiently below VSBB (minimum) to make data in the standby RAM suspect. It can be set only by software and is not affected during reset.

## PROGRAMMABLE TIMER

The programmable timer can be used to perform input waveform measurements while independently generating an output waveform. Pulse widths can vary from several microseconds to many seconds. A block diagram of the timer is shown in Figure 18.

## COUNTER (\$09:0A)

The key timer element is a 16 -bit free-running counter which is incremented by E (enable). It is cleared during reset and is read-only with one exception: a write to the counter ( $\$ 09$ ) will preset it to $\$ F F F 8$. This feature, intended for testing, can disturb serial operations because the counter provides the SCI internal bit rate clock. TOF is set whenever the counter contains all ones

## OUTPUT COMPARE REGISTER ( $\$ 0 \mathrm{~B}: 0 \mathrm{C}$ )

The output compare register is a 16 -bit read/write register used to control an output waveform or to provide an arbitrary timeout flag. It is compared with the free-running counter on each E cycle. When a match occurs, OCF is set and OLVL is clocked to an output level register. If port 2, bit 1 is configured as an output, OLVL will appear at P21 and the output compare register and OLVL can then be changed for the next compare. The function is inhibited for one cycle after a write to its high byte ( $\$ 0 \mathrm{~B}$ ) to ensure a valid compare. The output compare register is set to SFFFF at $\overline{\text { RESET }}$.

## INPUT CAPTURE REGISTER (\$0D:OE)

The input capture register is a 16 -bit read only register used to store the free-running counter when a "proper" input transition occurs as defined by IEDG. Port 2, bit 0 should be configured as an input, but the edge detect circuit always senses P20 even when configured as an output. An input capture can occur independently of ICF: the register always

contains the most current value. Counter transfer is in hibited, however, between accesses of a double byte MPU read. The input pulse width must be at least two E cycles to ensure an input capture under all conditions.

## TIMER CONTROL AND STATUS REGISTERS (\$08)

The timer control and status register (TCSR) is an 8 bit register of which al bits are readable, while only bits $0-4$ can be written. The three most significant bits provide the timer status and indicate if:

1. a proper level transition has been detected,
2. a match has occurred between the free-running counter and the output compare register, and
3. the free-running counter has overflowed.

Each of the three events can generate an $\overline{\mathrm{RQQ}}$ interrupt and is controlled by an individual enable bit in the TCSR.

## TIMER CONTROL AND STATUS REGISTER (TCSR)

| 7 | 6 |  | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ICF | OCF | TOF | EICI | EOCI | ETOI | IEDG | OLVL |

Bit 0 Output Level (OLVL) - OLVL is clocked to the output level register by a successful output compare and will appear at P21 if bit 1 of the port 2 data direction register is set. OLVL is cleared during reset.

Bit 1 Input Edge (IEDG) - IEDG is cleared during reset and controls which level transition on P20 will trigger a counter transfer to input capture register:
IEDG $=0$ transfer on a negative edge
IEDG $=1$ transfer on a positive edge
Bit 2 Enable Timer Overflow Interrupt (ETOI) When set, an $\overline{\mathrm{RO} 2}$ interrupt will be generated when the timer overflow flag is set; when clear, the interrupt is inhibited. ETOI is cleared during reset.

Bit 3 Enable Output Compare Interrupt (EOCI) - When set, an $\overline{\mathrm{RQ2}}$ interrupt will be generated when output compare flag is set; when clear, the interrupt is inhibited. EOCI is cleared during reset.

Bit 4 Enable Input Capture Interrupt (EICI) When set, an IRO2 interrupt will be generated when input capture flag is set; when clear, the interrupt is inhibited. EICl is cleared during reset.

Bit 5 Timer Overflow Flag (TOF) - The TOF is set when the counter contains all ones (\$FFFF). It is cleared by reading TCSR (with TOF set) then reading the counter high byte (\$09), or during reset.

Bit 6 Output Compare Flag (OCF) -- OCF is set when the output compare register matches the free-running counter. OCF is cleared by reading the TCSR (with OCF set) and then writing to output compare register ( $\$ 0 \mathrm{~B}$ or $\$ 0 \mathrm{C}$ ), or during reset.

Bit 7 Input Capture Flag (ICF) - When ICF is set, it indicates a proper level transition; it is cleared by reading TCSR (with ICF set) and then the input capture register high byte ( $\$ 0 \mathrm{D}$ ), or during reset.

## SERIAL COMMUNICATIONS INTERFACE

A full-duplex asynchronous serial communications intertace (SCI) is provided with two data formats and a variety of rates. The SCl transmitter and receiver are functionally independent, but use the same data format and bit rate. Serial data formats include standard mark/space (NRZ) and biphase and both provide one start bit, eight data bits, and one stop bit. "Baud" and "bit rate" are used synonymously in the following description

## WAKE-UP FEATURE

In a typical serial loop multiprocessor configuration, the software protocol will usually identify the addressee(s) at the beginning of the message. In order to permit uninterested MPUs to ignore the remainder of the message, a wake-up feature is included whereby all further SCl receiver flag (and interrupt) processing can be inhibited until its data line goes idle. An SCl receiver is re-enabled by an idle string of ten consecutive ones or during reset. Software must provide for the required idle string between consecutive messages and prevent it within messages.

## PROGRAMMABLE OPTIONS

The following features of the SCl are programmable:

- format : standard mark/space (NRZ) or bi-phase
- clock: external or internal bit rate clock
- baud: one of 4 per E clock frequency, or external clock ( $8 x$ desired baud)
- wake-up feature: enabled or disabled
- interrupt requests: enabled individually for transmitter and receiver
- clock output: internal bit rate clock enabled or disabled to P22


## SERIAL COMMUNICATIONS REGISTERS

The serial communications interface includes four addressable registers as depicted in Figure 19. It is controlled by the rate and mode control register and the transmit/ receive control and status register. Data is transmitted and received utilizing a write-only transmit register and a readonly receive register. The shift registers are not accessible to software.

RATE AND MODE CONTROL REGISTER (RMCR) (\$10) -
The rate and mode control register controls the SCl bit rate, format, clock source, and under certain conditions the configuration of P22. The register consists of four write-only bits which are cleared during reset. The two least significant bits control the bit rate of the internal clock and the remaining two bits control the format and clock source

FIGURE 19 - SCI REGISTERS
 Not Addressable)


RATE AND MODE CONTROL REGISTER

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $X$ | $X$ | $X$ | $X$ | CC1 | CCO | SS1 | SSO |

Bit 1:Bit 0 SS1:SS0 Speed Select - These two bits select the baud when using the internal clock. Four rates may be selected which are a function of the MPU input frequency. Table 6 lists bit time and rates for three selected MPU frequencies.

Bit 3:Bit 2 CC1:CC0 Clock Control and Format Select These two bits control the format and select the serial clock source. If CC1 is set, the DDR value for P22 is forced to the complement of CCO and cannot be altered until CC1 is cleared. If CC1 is cleared after having been set, its DDR value is unchanged. Table 7 defines the formats, clock source, and use of P22.

If both CC1 and CCO are set, an external TTL compatible clock must be connected to P22 at eight times $(8 \times)$ the desired bit rate, but not greater than $E$, with a duty cycle of $50 \%( \pm 10 \%)$. If $\mathrm{CC} 1: \mathrm{CCO}=10$, the internal bit rate clock is provided at P22 regardless of the values for TE or RE.

## NOTE

The source of SCl internal bit rate clock is the timer free-running counter. An MPU write to the counter can disturb serial operations

TRANSMIT/RECEIVE CONTROL AND STATUS REGISTER (TRCSR) (\$11) - The transmit/receive control and status register controls the transmitter, receiver, wakeup feature, and two individual interrupts, and monitors the status of serial operations. All eight bits are readable while bits 0 to 4 are also writable. The register is initialized to $\$ 20$ by RESET

## TRANSMIT/RECEIVE CONTROL AND STATUS REGISTER

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RDRF | ORFE | TDRE | RIE | RE | TIE | TE | WU |

Bit 0 Wake-up on Idle Line (WU) -- When set, WU enables the wake-up function; it is cleared by ten consecutive ones or during reset. WU will not set if the line is ide.

Bit 1 Transmit Enable (TE) - When set, the P24 DDR bit is set and cannoi be changed. P24 DDR will remain set if TE is subsequently cleared. When TE is changed from clear to set, the transmitter is connected to P24 and a preamble of nine consecutive ones is transmitted. TE is cleared during reset

Bit 2 Transmit Interrupt Enable (TIE) When set, an $\overline{\mathrm{RO} O 2}$ is enabled when TDRE is set; when clear, the interrupt is inhibited. TIE is cleared during reset.

Bit 3 Receive Enable (RE) - When set, the P23 DDR bit is cleared and cannot be changed. P23 DDR will remain clear if RE is subsequently cleared. While RE is set, the SCl receiver is enabled. RE is cleared during reset

Bit 4 Receiver Interrupt Enable (RIE) When set, an $\overline{\text { RO2 }}$ interrupt is enabled when RDRF and/or ORFE is set; when clear, the interrupt is inhibited. RIE is cleared during reset.

Bit 5 Transmit Data Register Empty (TDRE). TDRE is set when the transmit data register is transferred to the output serial shift register, or during reset. It is cleared by reading the TRCSR (with TDRE set) and then writing to the transmit data register Additional data will be transmitted only if TDRE has been cleared

TABLE 6 - SCI BIT TIMES AND RATES

| SS1:SS0 |  | E | 614.4 kHz |  | 1.0 MHz |  | 1.2288 MHz |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Baud | Time | Baud | Time | Baud | Time |
| 0 | 0 |  | $\div 16$ | 38400.0 | $26 \mu \mathrm{~s}$ | 62500.0 | $16.0 \mu \mathrm{~s}$ | 76800.0 | $13.0 \mu \mathrm{~s}$ |
| 0 | 1 | -128 | 4800.0 | $208.3 \mu \mathrm{~s}$ | 7812.5 | $128.0 \mu \mathrm{~s}$ | 9600.0 | $104.2 \mu \mathrm{~s}$ |
| 1 | 0 | $\div 1024$ | 600.0 | 1.67 ms | 976.6 | 1.024 ms | 1200.0 | $833.3 \mu \mathrm{~s}$ |
| 1 | 1 | +4096 | 150.0 | 6.67 ms | 244.1 | 4.096 ms | 300.0 | 333 ms |
| External (P22)* |  |  | 76800.0 | $13.0 \mu \mathrm{~s}$ | 125000.0 | $8.0 \mu \mathrm{~s}$ | 153600.0 | $6.5 \mu \mathrm{~s}$ |

[^0]TABLE 7 -- SCI FORMAT AND CLOCK SOURCE CONTROL

| CC1:CC0 | Format | Clock <br> Source | Port 2 <br> Bit 2 |
| :---: | :---: | :---: | :---: |
| 00 | Bi-Phase | Internal | Not Used |
| 01 | NRZ | Internal | Not Used |
| 10 | NRZ | Internal | Output |
| 11 | NRZ | External | Input |

Bit 6 Overrun Framing Error (ORFE) - If set, ORFE indicates ether an overrun or framing error. An overrun is a new byte ready to transter to the receive data register with RDRF still set. A receiver framing error has occurred when the byte boundaries of the bit stream are not synchronized to the bit counter. An overrun can be distinguished from a framing error by the state of RDRF: if RDRF is set, then an overrun has occurred; otherwise, a framing error has been detected. Data is not transferred to the receive data register in an overrun condition. Unframed data causing a framing error is transferred to the receive data register; however, subsequent data transfer is blocked until the framing error flag is cleared. ORFE is cleared by reading the TRCSF (with ORFE set) then the receive data register, or during reset

Bit 7 Receive Data Register Full (RDRF) - RDRF is set when the input serial shift register is transferred to the receive data register, or during reset.

## SERIAL OPERATIONS

The SCI is initialized by writing control bytes first to the rate and mode control register and then to the transmit/ receive control and status register. When TE is set, the output of the transmit serial shift register is connected to P24 and serial output is initiated by transmitting a 9 -bit preamble of ones.

At this point, one of two situations exists: 1) if the transmit data register is empty ( $\operatorname{TDRE}=1$ ), a continuous string of ones will be sent indicating an idle line, or 2 ) if a byte has been written to the transmit-data register (TDRE $=0$ ), it will be transterred to the output serial shift register (synchronized with the bit rate clock), TDRE will be set, and transmission will begin.

The start bit (0), eight data bits (beginning with bit 0), and a stop bit (1) will be transmitted. If TDRE is still set when the next byte transfer should occur, ones will be sent until more data is provided. In bi-phase format, the output toggles at the start of each bit and at half-bit time when a one is sent. Receive operation is controlled by RE which configures P23 as an input and enables the receiver. SCl data formats are illustrated in Figure 20

## INSTRUCTION SET

As stated earlier, the MC6803E is upward source and object code compatible with the MC6800. Execution times of key instructions have been reduced and several new instructions have been added, including a hardware multiply

In addition, two new special opcodes, 4E and 5E, are provided for test purposes. These opcodes force the program counter to increment like a 16 -bit counter, causing address lines to increment until the device is reset. These opcodes have no mnemonics.

The coding of the first (or only) byte corresponding to an executable instruction is sufficient to identify the instruction and the addressing mode. The hexadecimal equivalents of the binary codes, which result from the translation of the 82 instructions in all valid modes of addressing, are shown in Table 8. There are 220 valid machine codes, 34 unassigned codes, and two codes reserved for test purposes.

## PROGRAMMING MODEL

A programming model for the MC6803E is shown in Figure 6 . The registers are defined in the following paragraphs.

ACCUMULATORS - The MPU contains two 8-bit accumulators, $A$ and $B$, which are used to store operands and results from the arithmetic logic unit (ALU). They can be concatenated and referred to as the D (double) accumulator. Any operation which modifies the $D$ accumulator automatically modifies the $A$ and $B$ accumulators.

INDEX REGISTER - The index register is a 16 -bit register which can be used to store data or provide an address for the indexed mode of addressing

STACK POINTER - The stack pointer is a 16 bit register which contains the address of the next available location in a pushdown/pullup (LIFO) queue. The stack resides in random-access memory at a location defined by the programmer.

PROGRAM COUNTER -- The program counter is a 16 -bit register which always points to the next instruction

FIGURE 20 - SCI DATA FORMATS


Data: 01001101 (\$4D)

## MC6803E

TABLE 8 －CPU INSTRUCTION MAP

| OP | MNEM | MODE | $\sim$ | \＃ | OP | MNEM | MODE | $\sim$ | \＃ | OP | MNEM | MODE | $\sim$ | \＃ | OP | MNEM | MODE | $\sim$ | $\#$ | OP | MNEM | MODE | $\sim$ | ＊ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| （0） | $\cdot$ |  |  |  | 14 | DES | INHER | 3 | 1 | 68 | ASL | INDXO | 6 | 2 | 9 C | C．PX | DIR | 5 | 2 | DO） | SIAB | OIA | 3 | ？ |
| 01 | Nop | INHER | $?$ | 1 | 15 | IXS | － | 3 | 1 | 69 | ROL | 1 | 6 | 2 | 90 | JSR | 4 | 5 | $?$ | 01 | CMPH | － | 3 | $?$ |
| 02 | － |  |  |  | 36 | PSHA |  |  | 1 | HA | OFC． |  | 6 | 2 | 9E | 105 |  | 4 | 2 | D2 | SBCR |  | 3 | $?$ |
| 03 | － |  |  |  | 37 | PSHE |  |  | 1 | 68 | － |  |  |  | 9 F | STS | 1 HH | 4 | 2 | 0.3 | ADOO |  | $b$ | $?$ |
| 04 | ，540 |  | 3 | 1 | 38 | Pulx |  |  | 1 | 60 ： | inc |  |  | 2 | A ${ }^{0}$ | Suba | INDXO | 4 | 7 | 04 | ANOH |  | 3 | $?$ |
| 03 | ASt ${ }^{\text {P }}$ |  | 3 | 1 | 39 | RTS |  | 5 | 1 | 60 | TST |  | 6 | 2 | Al | （MPA | 1 | 4 | 2 | O3 | BITR |  | 3 | $?$ |
| O6 | TAP |  | ， | 1 | 3 A | ABX |  | 3 | 1 | 5 F | JMP |  | 3 | $?$ | $A_{2}$ | Sbca |  | 4 | 2 | （0） | U UAK |  | 3 | $?$ |
| 07 | IPA |  | ？ | 1 | 3 B | RTI |  | 10 | 1 | 67 | C．th | ｜N（D）${ }^{(1)}$ | 6 | 2 | A3 | SIIBD |  | $t$ | 2 | 01 | SIAM |  | 3 | $?$ |
| 08 | INX |  | 1 | 1 | $3{ }^{\prime}$ | PSHX |  | 4 | 1 | 10 | NHG | I XTND | ¢ | 3 | A4 | ANDA |  | 4 | 2 | OH | FOHH |  | 1 | $?$ |
| 09 | DEX |  | 1 | 1 | 3 D | MU1 |  | 10 | 1 | 71 | ． |  |  |  | As | bita |  | 4 | 2 | 09 | AOCH |  | 1 | $?$ |
| OA | いV |  | ？ | 1 | 31 | WAI |  |  | 1 | 72 | － |  |  |  | $\Delta \theta^{\prime}$ | IDAA |  | 4 | 2 | ［）A | （1PAB |  | 3 | $?$ |
| 08 | SFV |  | ． | 1 | 31 | SWI |  | 12 | 1 | 13 | COM |  | 6 | 3 | Al | Stam |  | 4 | 3 | OH | AOOH |  | 1 | $?$ |
| OC | Cい |  | ？ | 1 | 40 | NEGA |  |  | 1 | 14 | LSt |  | 6 | 3 | $A B$ | f ORA |  | 4 | 2 | Or | 1015 |  | 4 | ？ |
| 00 | SFC |  | ， | 1 | 41 | ． |  |  |  | 15 | $\cdot$ |  |  |  | 49 | Adta |  | 4 | $\therefore$ | ［1） | S10 | 1 | 4 | ？ |
| Of | CHI |  | ， | 1 | 42 | － |  |  |  | 16 | ROR |  | $t$ | 3 | AA | ORAA |  | 4 | 2 | Of | 10x | $\gamma$ | 4 | ？ |
| OF | 581 |  | $\therefore$ | 1 | 43 | COMA |  | 2 | 1 | 77 | ASR |  | H， | 3 | $A B$ | ADOA |  | 4 | $?$ | 0 | 勺ix | 1114 | 4 | $?$ |
| 10 | SHA |  | 2 | 1 | 44 | ISRA |  |  | 1 | 18 | ASt |  | 6 | 3 | $A C^{\circ}$ | （FX |  | $t \cdot$ | $\therefore$ | 10 | Cllen |  | 4 | ？ |
| 11 | CBA |  | $?$ | 1 | 45 | ， |  |  |  | 79 | ROI |  | ＊ | 3 | $\Delta \mathrm{D}$ | ASH |  | 1. | 2 | \％ 1 | 1 MPH | ＋ | 4 | $?$ |
| 12 | － |  |  |  | 46 | RORA |  | ？ | 1 | 7 A | Of： |  | ； | 3 | AE | Lus | 1 | 4 | ？ | 10 | SRCH |  | 4 | 2 |
| 13 | － |  |  |  | 47 | ASRA |  | 2 | 1 | 78 | ． |  |  |  | AF | STS | Nisul． | ＇ | 2 | 14 | alool |  | 1. | $?$ |
| 14 | － |  |  |  | 48 | ASIA |  | 2 | 1 | 73 | INC |  | 1. | 3 | 80 | SUBA | ＋xint | 1 | ， | ： 1 | Ander |  | 4 | ？ |
| 15 | $\cdots$ |  |  |  | 49 | ROLA |  |  | ： | 10 | TSt |  | $\cdots$ | 3 | R1 | （MPA |  | 4 | ， | ： | Hith |  | 4 | $?$ |
| 16 | TAM |  | ， | 1 | 4 A | DEAA |  | 2 | 1 | 78 | IMP |  | 3 | 3 | 82 | SBCA |  | 4 | 1 | $\therefore$ | 10 AB |  | ． | ？ |
| 11 | tra |  | $?$ | 1 | 48 | － |  |  |  | 75 |  | （XTNO） | ＊ | 3 | B3 | SURD |  | ＋ | ， | ＋ | ¢1ab |  | 4 | ？ |
| 18 | － |  |  |  | $4{ }^{\circ}$ | inca |  | 2 | 1 | 80 | Suba | IMMFD | $?$ | 2 | B4 | ANDA |  | 4 | 3 | $1 / 8$ | f 1 HEH |  | ， | $?$ |
| 19 | DAA | INHER | 2 | 1 | 40 | iSta |  | 2 | 1 | 81 | （MPA | － | $?$ | 2 | 85 | RIf |  | 4 | 1 | 19 | Alx ${ }^{\text {a }}$ |  | 4 | $?$ |
| 1 A | － |  |  |  | 4 F | 1 |  |  |  | 82 | SBCA |  | $?$ | $?$ | H6） | LUAA |  | 1 | 1 | ：A | matar |  | 4 | $?$ |
| 18 | ABA | INHEA | 2 | 1 | 45 | （ LRA |  | 2 | 1 | 83 | SUBD |  | 4 | 3 | （2） | SIAA |  | 1 | 1 | 1\％ | AloDR |  | 4 | $?$ |
| 10 | ． |  |  |  | 50 | NE（i8 |  |  | 1 | 84 | ANDA |  | 2 | 2 | H8 | flira |  | 4 | 1 | \％ | （10） |  | ， | ？ |
| 10 | － |  |  |  | 51 | － |  |  |  | 85 | HITA |  | ？ | 2 | H9 | ADIA |  | 4 | 1 | （1） | 400 |  | ${ }^{1}$ | 7 |
| 18 | － |  |  |  | 42 | － |  |  |  | 86 | LDAA |  | 2 | 2 | GA | ORAA |  | 4 | 1 | 1－1 | $10 \times$ |  | ＇ | ？ |
| 11 | － |  |  |  | 53 | COMB |  | ？ | 1 | 87 | ． |  |  |  | B8 | ADOA |  | 4 | 1 | ： | ¢1x | 120］3 | 4 | ？ |
| 20 | BRA | RFI | 3 | 2 | 54 | I SRR |  | $?$ | 1 | 88 | FOHA |  |  | $?$ | $B C^{\circ}$ | （ PX |  | $t$ | 3 | F19 | SUHR | －XV： | 4 | 1 |
| 21 | BRN | 1 | 3 | 2 | 55 | ， |  |  |  | 89 | ADCA |  | \％ | 2 | HD | JSt |  | ti | 3 | ： 1 | －MPra | 1 | 4 | 1 |
| 22 | BHI |  | 3 | 2 | 56 | RORR |  | 2 | 1 | 8 A | OHAA |  | ？ | 2 | HF | 1 CS | 1 | ！ | 1 | $\because$ | ， B H H |  | a | 1 |
| 23 | BIS |  | 3 | 2 | 57 | ASRE |  | 2 | 1 | 88 | ADDA |  | ， | 2 | BF | STS | ＋X M | 4 | 3 | ； 1 | AODO |  | t | 1 |
| 24 | BCO |  | 3 | 2 | 58 | ASIB |  | 2 | 1 | 8 C | CPX | MMME： | 4 | 3 | （0） | SliAB | （MME） | $?$ | ， | $\therefore 4$ | ANOH |  | 4 | 1 |
| 25 | BC：S |  | 3 | 2 | 59 | HOLB |  | 2 | 1 | 80 | 85R | REL | $t$ | 2 | （1） | （MPB | 4 | $?$ | $\therefore$ | $\therefore$ | HITH |  | 4 | 1 |
| 26 | RNF |  | 3 | 2 | 54 | DECB |  | 2 | 1 | 8E | 105 | IMMFD | 3 | 3 | （2） | SACH |  | $\therefore$ | 2 | it | 1 DAB |  | 4 | 1 |
| 27 | BFO |  | 3 | 2 | 58 | ， |  |  |  | BF | － |  |  |  | 13 | a ADOO |  | 4 | 3 | $\because$ | 勺IAB |  | ． | 1 |
| 28 | BVC： |  | 3 | 2 | 50 | INC．${ }^{\text {a }}$ |  | 2 | 1 | 90 | Suba | DIA | 3 | 2 | 14 | ANDR |  | $\therefore$ | $\cdot 1$ | ：H | 10 HH |  | 4 | 1 |
| 29 | BVS |  | 3 | 2 | 5D | isis |  | 2 | 1 | 91 | （MPA | ， | 4 | 2 | 15 | Rits |  | ， | 2 | ：4 | AlOH |  | 4 | 1 |
| 2 A | RPI |  | 3 | 2 | 5 E | 1 | 7 |  |  | 92 | SBC：A |  | 3 | 2 | $\bigcirc 6$ | 1DAH |  | $\therefore$ | 2 | ：A | libabs |  |  | 1 |
| 28 | 8M1 |  | 3 | 2 | 5 F | CLRB | INHER | 2 | 1 | 93 | Subo |  | 5 | 2 | C＇7 |  |  |  |  | \％${ }^{\text {a }}$ | A006 |  | 4 | 1 |
| 2 C | bel |  | 3 | 2 | 60 | NEG | INOXC | 6 | 2 | 34 | ANOA |  | 3 | 2 | －8 | GORB |  | 2 | $\therefore$ | $\cdots$ | 1091 |  | 1. | 1 |
| 20 | 819 | F | 3 | 2 | 61 | － | 1 |  |  | 95 | BITA |  | 3 | 2 | C9 | ADCB |  | $?$ | $?$ | FU | $\therefore 16$ | 1 | $\checkmark$ | 3 |
| 2 E | BGT | $\checkmark$ | 3 | 2 | 62 | － |  |  |  | 96 | LDAA |  | 3 | 2 | CA | ORAB |  | $\therefore$ | $\therefore$ | ！ | $161 \times$ | 1 | $\checkmark$ | 1 |
| 21 | BLE | HEL | 3 | 2 | 63 | COM |  | 6 | 2 | 97 | STAA |  | 3 | 2 | $C B$ | ADDH |  | $\therefore$ | － | ， | 4ix | 1＊＊ | ＇ | ， |
| 30 | ISX | INHFR | 3 | 1 | 64 | LSR |  | 6 | 2 | 98 | EORA |  | 3 | 2 | Cr | 100 | 1 | 1 | 3 |  |  |  |  |  |
| 31 | INS | － | 3 | 1 | 65 | － | 1 |  |  | 99 | ADCA |  | 3 |  |  |  |  |  |  |  |  |  |  |  |
| 32 | Pula | 1 | 4 | 1 | 66 | ROR | $\checkmark$ |  | 2 | 9 A | ORAA | 1 | 3 |  |  | $10 x$ | MMMF 0 | 3 | 3 |  | NOTIINf： |  |  |  |
| 33 | PULB |  | 4 | 1 | 67 | ASR | $1 \mathrm{ND} \times 1$ | 6 | 2 | 98 | ADDA |  | 3 | 2 | CF |  |  |  |  |  |  |  |  |  |

NOTES：
1．Addressing Modes

$$
\begin{array}{lll}
\text { INHER } \equiv \text { Inherent } & \text { INDXD } \equiv \text { Indexed } & \text { IMMED } \equiv \text { Immediate } \\
R E L \equiv \text { Relative } & \text { EXTND } \equiv \text { Extended } & D R \equiv \text { Direct }
\end{array}
$$

2．Unassigned opcodes are indicated by＂＂＂and should not be executed．
3．Codes marked by＂$T$＂force the PC to function as a 16 －bit counter

CONDITION CODE REGISTER－The condition code register indicates the results of an instruction and includes the following five condition bits：negative $(N)$ ，zero $(Z)$ ， overflow（V），carry／borrow from MSB（C），and halt carry from bit $3(H)$ ．These bits are testable by the conditional branch instructions．Bit 4 is the interrupt mask（I bit）and in－ hibits all maskable interrupts when set．The two unused bits， $B 6$ and $B 7$ ，are read as ones．

## ADDRESSING MODES

Six addressing modes can be used to reference memory． A summary of the addressing modes for all instructions is presented in Tables 9 through 12，where execution times are provided in E cycles．Instruction execution times are sum－ marized in Table 13．With an input frequency of 4 megahertz， one E cycle is equivalent to one microsecond．A description of selected instructions is shown in Figure 21.

IMMEDIATE ADDRESSING－The operand or immediate byte（s）is contained in the following byte（s）of the instruction where the number of bytes matches the size of the register These are two or three byte instructions．

DIRECT ADDRESSING－The least significant byte of the operand address is contained in the second byte of the in－ struction and the most significant byte is assumed to be $\$ 00$ ． Direct addressing a lows the user to access $\$ 00$ through \＄FF using two byte instructions and execution time is reduced by eliminating the additional memory access．In most applica－ tions，the 256 －byte area is reserved for frequently referenced data

EXTENDED ADDRESSING－The second and third bytes of the instruction contain the absolute address of the operand．These are three byte instructions．

INDEXED ADDRESSING - The unsigned offset contained in the second byte of the instruction is added with carry to the index register and used to reference memory without changing the index register. These are two byte instructions.

INHERENT ADDRESSING - The operand(s) is a register and no memory reference is required. These are single byte instructions.

RELATIVE ADDRESSING - Relative addressing is used only for branch instructions. If the branch condition is true, the program counter is overwritten with the sum of a signed single byte displacement in the second byte of the instruction and the current program counter. This provides a branch range of -126 to +129 bytes from the first byte of the instruction. These are two byte instructions.

TABLE 9 - INDEX REGISTER AND STACK MANIPULATION INSTRUCTIONS

| Pointer Operations | Mnemonic | Immed |  |  | Direct |  |  | Index |  |  | Extnd |  |  | Inherent |  |  | Boolean / <br> Arithmetic Operation | Condition Codes |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 5 | 4 | 3 |  |  |  | 2 | 1 | 0 |  |  |  |  |
|  |  | OP - |  | \# |  |  |  | OP | - | \# |  |  |  | OP | - | \# |  | OP | - | \# | OP | - | \# | H | 1 | N | Z | V | C |
| Compare Index Reg | CPX | 8C | 4 | 3 | 9C | 5 | 2 | AC | 6 | 2 | BC | 6 | 3 |  |  |  | $X-M: M+1$ | $\bullet$ | - | $\frac{1}{1}$ |  | 1 | 1 |
| Decrement Index Reg | DEX |  |  |  |  |  |  |  |  |  |  |  |  | 09 | 3 | 1 | $X-1-x$ | $\bullet$ | - | - | , | $\bullet$ | $\bullet$ |
| Decrement Stack Pntr | DES |  |  |  |  |  |  |  |  |  |  |  |  | 34 | 3 | 1 | SP-1-SP | - | - | - | - | $\bullet$ | $\bullet$ |
| Increment Index Reg | INX |  |  |  |  |  |  |  |  |  |  |  |  | 08 | 3 | 1 | $x+1-x$ | $\bullet$ | - | - | 1 | - | $\bullet$ |
| Increment Stack Pntr | INS |  |  |  |  |  |  |  |  |  |  |  |  | 31 | 3 | 1 | $1 S P+1-S P$ | $\bullet$ | $\bullet$ | - | - | - | - |
| Load Index Reg | LDX | CE | 3 | 3 | DE | 4 | 2 | EE | 5 | 2 | FE | 5 | 3 |  |  |  | $M-X_{H}(M+1)-X_{L}$ | $\bullet$ | - |  |  | R | $\bigcirc$ |
| Load Stack Pntr | LDS | 8 E | 3 | 3 | 9E | 4 | 2 | AE | 5 | 2 | BE | 5 | 3 |  |  |  | $M-S P_{H},(M+1)-S P_{L}$ | $\bullet$ | - |  |  | R | $\bigcirc$ |
| Store Index Reg | STX |  |  |  | DF | 4 | 2 | EF | 5 | 2 | FF | 5 | 3 |  |  |  | $X_{H}-M, X_{L}-(M+1)$ | - | - |  |  | R | $\bullet$ |
| Store Stack Pntr | STS |  |  |  | 9 F | 4 | 2 | AF | 5 | 2 | BF | 5 | 3 |  |  |  | $S P_{H}-M, S P_{L}-(M+1)$ | $\bullet$ | $\bigcirc$ |  | 1 | R | $\bigcirc$ |
| Index Reg - Stack Pntr | TXS |  |  |  |  |  |  |  |  |  |  |  |  | 35 | 3 | 1 | $X-1-S P$ | - | $\bullet$ | - | - | - | $\bullet$ |
| Stack Pntr -Index Reg | TSX |  |  |  |  |  |  |  |  |  |  |  |  | 30 | 3 | 1 | $S P+1-X$ | $\bullet$ | $\bullet$ | $\bullet$ | - | - | $\bigcirc$ |
| Add | ABX |  |  |  |  |  |  |  |  |  |  |  |  | 3A | 3 | 1 | $B+X-X$ | $\bullet$ | - | $\bullet$ | $\bigcirc$ | - | $\bullet$ |
| Push Data | PSHX |  |  |  |  |  |  |  |  |  |  |  |  | 3C | 4 | 1 | $\begin{aligned} & X_{L}-M S P, S P-1-S P \\ & X_{H}-M S P, S P-1-S P \end{aligned}$ | $\bullet$ | - | $\bullet$ | $\bullet$ | - | $\bullet$ |
| Pull Data | PULX |  |  |  |  |  |  |  |  |  |  |  |  | 38 | 5 | 1 | $\begin{aligned} & S P+1-S P, M S P-X_{H} \\ & S P+1-S P, M S P-X_{L} \end{aligned}$ | $\bullet$ | - | - | - | $\bullet$ | - |

TABLE 10 - ACCUMULATOR AND MEMORY INSTRUCTIONS (Sheet 1 of 2)

| Accumulator and Memory Operations | MNE | Immed |  |  | Direct |  |  | Index |  |  | Extend |  |  | Inher |  |  | Boolean Expression | Condition Codes |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Op | $\sim$ | \# |  | H | 1 | N | 2 | V | C |
| Add Acmitrs | ABA |  |  |  |  |  |  |  |  |  |  |  |  | 18 | 2 | 1 | $A+B-A$ | 1 | $\bullet$ | 1 | 1 | 1 | 1 |
| Add B to X | ABX |  |  |  |  |  |  |  |  |  |  |  |  | 3A | 3 | 1 | OO:B+X-X | $\bullet$ | $\bullet$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| Add with Carry | ADCA | 89 | 2 | 2 | 99 | 3 | 2 | A9 | 4 | 2 | B9 | 4 | 3 |  |  |  | $A+M+C-A$ |  | $\bigcirc$ | 1 |  | 1 | 1 |
|  | ADCB | C9 | 2 | 2 | D9 | 3 | 2 | E9 | 4 | 2 | F9 | 4 | 3 |  |  |  | $B+M+C-B$ | , | $\bigcirc$ | 1 | 1 | 1 |  |
| Add | ADDA | 8B | 2 | 2 | 98 | 3 | 2 | AB | 4 | 2 | BB | 4 | 3 |  |  |  | $A+M-A$ |  | $\bigcirc$ | 1 |  |  |  |
|  | ADDB | CB | 2 | 2 | DB | 3 | 2 | EB | 4 | 2 | FB | 4 | 3 |  |  |  | $B+M-A$ | 1 | - |  |  |  | 1 |
| Add Double | ADDD | C3 | 4 | 3 | D3 | 5 | 2 | E3 | 6 | 2 | F3 | 6 | 3 |  |  |  | $D+M: M+1-D$ | $\bullet$ | - |  |  |  | 1 |
| And | ANDA | 84 | 2 | 2 | 94 | 3 | 2 | A4 | 4 | 2 | B4 | 4 | 3 |  |  |  | $A \cdot M-A$ | $\bigcirc$ | - | 1 |  | R | $\bigcirc$ |
|  | ANDB | C4 | 2 | 2 | D4 | 3 | 2 | E4 | 4 | 2 | F4 | 4 | 3 |  |  |  | $B \cdot M-B$ | $\bigcirc$ | - | 1 | 1 | R | $\bigcirc$ |
| Shift Left, Arithmetic | ASL |  |  |  |  |  |  | 68 | 6 | 2 | 78 | 6 | 3 |  |  |  |  | $\bullet$ | $\bigcirc$ | 1 | 1 | 1 | 1 |
|  | ASLA |  |  |  |  |  |  |  |  |  |  |  |  | 48 | 2 | 1 |  | - | $\bigcirc$ |  |  | 1 |  |
|  | ASLB |  |  |  |  |  |  |  |  |  |  |  |  | 58 | 2 | 1 |  | $\bigcirc$ | $\bigcirc$ |  | 1 | 1 | 1 |


| Accumulator and Memory Operations | MNE | Immed |  |  | Direct |  |  | Index |  |  | Extend |  |  | Inher |  |  | Boolean Expression | Condition Codes |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Op | ~ | \# | Op | - | \# | Op | - | \# | Op | $\sim$ | \# | Op | - | \# |  | H | 1 | N | 2 | V | C |
| Shift Left Dbl | ASLD |  |  |  |  |  |  |  |  |  |  |  |  | 05 | 3 | 1 |  | $\bigcirc$ | $\bigcirc$ | 1 | 1 | 1 | 1 |
| Shift Right, Arithmetic | ASR |  |  |  |  |  |  | 67 | 6 | 2 | 77 | 6 | 3 |  |  |  | $\rightarrow \overrightarrow{\mathrm{b}, 1} \vec{\square} \rightarrow 0$ | $\bullet$ | $\bullet$ | 1 | 1 | 1 | 1 |
|  | ASRA |  |  |  |  |  |  |  |  |  |  |  |  | 47 | 2 | 1 |  | - | $\bullet$ | 1 | 1 | 1 | 1 |
|  | ASRB |  |  |  |  |  |  |  |  |  |  |  |  | 57 | 2 | 1 |  | $\bullet$ | - | 1 | 1 | 1 | 1 |
| Bit Test | BITA | 85 | 2 | 2 | 95 | 3 | 2 | A5 | 4 | 2 | B5 | 4 | 3 |  |  |  | A $\cdot \mathrm{M}$ | - | $\bullet$ | 1 | 1 | R | $\bigcirc$ |
|  | BITB | C5 | 2 | 2 | D5 | 3 | 2 | E5 | 4 | 2 | F5 | 4 | 3 |  |  |  | B $\cdot \mathrm{M}$ | - | $\bullet$ | 1 | 1 | R | $\bullet$ |
| Compare Acmlirs | CBA |  |  |  |  |  |  |  |  |  |  |  |  | 11 | 2 | 1 | A B | - | $\bullet$ | ! | 1 | 1 | 1 |
| Clear | CLR |  |  |  |  |  |  | 6 F | 6 | 2 | 7 F | 6 | 3 |  |  |  | OO-M | - | - | R | S | R | R |
|  | CLRA |  |  |  |  |  |  |  |  |  |  |  |  | 4F | 2 | 1 | $00-A$ | - | $\bigcirc$ | R | S | R | R |
|  | CLRB |  |  |  |  |  |  |  |  |  |  |  |  | 5 F | 2 | 1 | $00-B$ | - | $\bullet$ | R | S | R | R |
| Compare | CMPA | 81 | 2 | 2 | 91 | 3 | 2 | A1 | 4 | 2 | B1 | 4 | 3 |  |  |  | A. M | - | $\bullet$ | 1 | 1 | 1 | 1 |
|  | CMPB | C1 | 2 | 2 | D1 | 3 | 2 | E1 | 4 | 2 | F1 | 4 | 3 |  |  |  | B - M | $\bullet$ | $\bullet$ |  |  | 1 | 1 |
| 1 s Complement | COM |  |  |  |  |  |  | 63 | 6 | 2 | 73 | 6 | 3 |  |  |  | $\bar{M}-M$ | $\bullet$ | $\bullet$ |  |  | R | S |
|  | COMA |  |  |  |  |  |  |  |  |  |  |  |  | 43 | 2 | 1 | $\overline{\bar{A}}-A$ | - | $\bigcirc$ |  |  | R | S |
|  | COMB |  |  |  |  |  |  |  |  |  |  |  |  | 53 | 2 | 1 | $\bar{B}-B$ | $\bullet$ | $\bullet$ |  |  | R | S |
| Decimal Adj. A | DAA |  |  |  |  |  |  |  |  |  |  |  |  | 19 | 2 | 1 | Adj binary sum to BCD | - | $\bullet$ |  |  | 1 | 1 |
| Decrement | DEC |  |  |  |  |  |  | 6 A | 6 | 2 | 7A | 6 | 3 |  |  |  | M - $1-M$ | $\bullet$ | $\bullet$ |  | , |  | $\bullet$ |
|  | DECA |  |  |  |  |  |  |  |  |  |  |  |  | 4A | 2 | 1 | A $1-\mathrm{A}$ | - | - |  | 1 |  | $\bullet$ |
|  | DECB |  |  |  |  |  |  |  |  |  |  |  |  | 5A | 2 | 1 | $B-1-B$ | $\bigcirc$ | - | 1 | 1 | 1 | $\bigcirc$ |
| Exclusive OR | EORA | 88 | 2 | 2 | 98 | 3 | 2 | A8 | 4 | 2 | B8 | 4 | 3 |  |  |  | $A \oplus M-A$ | - | - | , | 1 | A | $\bigcirc$ |
|  | EORB | C8 | 2 | 2 | D8 | 3 | 2 | E8 | 4 | 2 | F8 | 4 | 3 |  |  |  | $B(9) M-B$ | $\bullet$ | $\bullet$ | 1 | 1 | R | $\bigcirc$ |
| Increment | INC |  |  |  |  |  |  | 6 C | 6 | 2 | 7 C | 6 | 3 |  |  |  | $M+1-M$ | - | $\bullet$ | 1 | 1 | 1 | $\bullet$ |
|  | INCA |  |  |  |  |  |  |  |  |  |  |  |  | 4C | 2 | 1 | $A+1-A$ | - | $\bigcirc$ | 1 | 1 |  | $\bullet$ |
|  | INCB |  |  |  |  |  |  |  |  |  |  |  |  | 5C | 2 | 1 | $B+1-B$ | $\bullet$ | $\bullet$ | 1 | 1 | 1 | $\bigcirc$ |
| Load Acmltrs | LDAA | 86 | 2 | 2 | 96 | 3 | 2 | A6 | 4 | 2 | B6 | 4 | 3 |  |  |  | $M-A$ | $\bullet$ | $\bigcirc$ |  | 1 | R | $\bigcirc$ |
|  | LDAB | C6 | 2 | 2 | 06 | 3 | 2 | E6 | 4 | 2 | F6 | 4 | 3 |  |  |  | M-B | - | $\bullet$ |  |  | R | $\bullet$ |
| Load Double | LDD | CC | 3 | 3 | DC | 4 | 2 | EC | 5 | 2 | FC | 5 | 3 |  |  |  | $\mathrm{M}: \mathrm{M}+1-\mathrm{D}$ | $\bullet$ | $\bullet$ | 1 | 1 | R | $\bullet$ |
| Logical Shift. Left | LSL |  |  |  |  |  |  | 68 | 6 | 2 | 78 | 6 | 3 |  |  |  | $0<\square \square_{6}$ | $\bullet$ | $\bullet$ | 1 | , | 1 | 1 |
|  | LSLA |  |  |  |  |  |  |  |  |  |  |  |  | 48 | 2 | 1 |  | $\bullet$ | $\bullet$ | 1 | , | , | - |
|  | LSLB |  |  |  |  |  |  |  |  |  |  |  |  | 58 | 2 | 1 |  | $\bullet$ | $\bigcirc$ | - | 1 | ! | 1 |
|  | LSLD |  |  |  |  |  |  |  |  |  |  |  |  | 05 | 3 | 1 |  | $\bullet$ | - | 1 |  | L | 1 |
| Shift Right, Logical | LSR |  |  |  |  |  |  | 64 | 6 | 2 | 74 | 6 | 3 |  |  |  |  | - | - | R |  |  | 1 |
|  | LSRA |  |  |  |  |  |  |  |  |  |  |  |  | 44 | 2 | 1 |  | - | $\bigcirc$ | R | 1 |  | ; |
|  | LSRB |  |  |  |  |  |  |  |  |  |  |  |  | 54 | 2 | 1 |  | $\bullet$ | - | R | , |  | 1 |
|  | LSRD |  |  |  |  |  |  |  |  |  |  |  |  | 04 | 3 | 1 |  | - | $\bigcirc$ | R | 1 | 1 | 1 |
| Multiply | MUL |  |  |  |  |  |  |  |  |  |  |  |  | 3D | 10 | 1 | A $\times$ B-D | - | - | $\bullet$ | $\bullet$ | $\bullet$ | 1 |
| 2 's Complement (Negate) | NEG |  |  |  |  |  |  | 60 | 6 | 2 | 70 | 6 | 3 |  |  |  | $00-M-M$ | - | - | 1 | 1 | 1 | 1 |
|  | NEGA |  |  |  |  |  |  |  |  |  |  |  |  | 40 | 2 | 1 | $00-A-A$ | - | $\bullet$ | 1 | 1 | 1 | 1 |
|  | NEGB |  |  |  |  |  |  |  |  |  |  |  |  | 50 | 2 | 1 | OO-B-B | - | $\bullet$ | 1 | 1 | 1 |  |
| No Operation | NOP |  |  |  |  |  |  |  |  |  |  |  |  | 01 | 2 | 1 | $P C+1-P C$ | $\bullet$ | - | - | - | - | - |
| Inclusive OR | ORAA | 8A | 2 | 2 | 9A | 3 | 2 | AA | 4 | 2 | BA | 4 | 3 |  |  |  | $A+M-A$ | $\bullet$ | $\bullet$ |  | 1 | R | $\bigcirc$ |
|  | ORAB | CA | 2 | 2 | DA | 3 | 2 | EA | 4 | 2 | FA | 4 | 3 |  |  |  | $B+M-B$ | - | - |  | 1 | R | $\bullet$ |
| Push Data | PSHA |  |  |  |  |  |  |  |  |  |  |  |  | 36 | 3 | 1 | A - Stack | - | $\bigcirc$ | $\bullet$ | - | - | $\bullet$ |
|  | PSHB |  |  |  |  |  |  |  |  |  |  |  |  | 37 | 3 | 1 | B - Stack | $\bullet$ | - | - | - | - | - |
| Pull Data | PULA |  |  |  |  |  |  |  |  |  |  |  |  | 32 | 4 | 1 | Stack - A | $\bullet$ | $\bigcirc$ | - | - | $\bullet$ | $\bullet$ |
|  | PULB |  |  |  |  |  |  |  |  |  |  |  |  | 33 | 4 | 1 | Stack - B | $\bullet$ | - | - | - | $\bigcirc$ | $\bigcirc$ |
| Rotate Left | ROL |  |  |  |  |  |  | 69 | 6 | 2 | 79 | 6 | 3 |  |  |  |  | $\bullet$ | $\bullet$ | 1 | 1 | 1 | 1 |
|  | ROLA |  |  |  |  |  |  |  |  |  |  |  |  | 49 | 2 | 1 |  | $\bullet$ | - | 1 | 1 | 1 | 1 |
|  | ROLB |  |  |  |  |  |  |  |  |  |  |  |  | 59 | 2 | 1 |  | $\bullet$ | $\bullet$ | 1 | , | 1 | 1 |
| Rotate Right | ROR |  |  |  |  |  |  | 66 | 6 | 2 | 76 | 6 | 3 |  |  |  | $G \rightarrow \prod_{n} \operatorname{lil}_{\infty} \rightarrow 0$ | $\bullet$ | $\bigcirc$ | 1 |  |  | ! |
|  | RORA |  |  |  |  |  |  |  |  |  |  |  |  | 46 | 2 | 1 |  | $\bullet$ | - | 1 | 1 | 1 | 1 |
|  | RORB |  |  |  |  |  |  |  |  |  |  |  |  | 56 | 2 | 1 |  | $\bullet$ | $\bullet$ | 1 | 1 | 1 | 1 |
| Subtract Acmitr | SBA |  |  |  |  |  |  |  |  |  |  |  |  | 10 | 2 | 1 | A.B-A | $\bullet$ | - | 1 | 1 | 1 | , |
| Subtract with Carry | SBCA | 82 | 2 | 2 | 92 | 3 | 2 | A2 | 4 | 2 | B2 | 4 | 3 |  |  |  | $A \cdot M-C-A$ | $\bullet$ | $\bullet$ | 1 |  |  | 1 |
|  | SBCB | C2 | 2 | 2 | D2 | 3 | 2 | E2 | 4 | 2 | F2 | 4 | 3 |  |  |  | $B-M-C-B$ | $\bullet$ | $\bullet$ | 1 |  | R | 1 |
| Store Acmitrs | STAA |  |  |  | 97 | 3 | 2 | A7 | 4 | 2 | B7 | 4 | 3 |  |  |  | $A-M$ | - | $\bullet$ |  | 1 | R | - |
|  | STAB |  |  |  | D7 | 3 | 2 | 2 E7 | 4 | 2 | F7 | 4 | 3 |  |  |  | $B-M$ | $\bullet$ | $\bullet$ | 1 | 1 | R | - |
|  | STD |  |  |  | DD | 4 | 2 | 2 ED | 5 | 2 | FD | 5 | 3 |  |  |  | $D-M: M+1$ | $\bullet$ | $\bullet$ | 1 | 1 | R | - |
| Subtract | SUBA | 80 | 2 | 2 | 90 | 3 | 2 | 2 AO | 4 | 2 | BO | 4 | 3 |  |  |  | $A \cdot M=A$ | - | - | 1 | 1 | 1 | 1 |
|  | SUBB | CO | 2 | 2 | D0 | 3 | 2 | 2 EO | 4 | 2 | FO | 4 | 3 |  |  |  | $B \cdot M-B$ | - | $\bigcirc$ |  | 1 |  |  |
|  | SUBD | 83 | 4 | 3 | 93 | 5 | 2 | A3 | 6 | 2 | B3 | 6 | 3 |  |  |  | $D-M: M+1-D$ | $\bullet$ | - | 1 | 1 | , | 1 |
| Transfer Acmltr | TAB |  |  |  |  |  |  |  |  |  |  |  |  | 16 | 2 | 1 | $A \rightarrow B$ | - | - | 1 | 1 | A | $\bigcirc$ |
|  | TBA |  |  |  |  |  |  |  |  |  |  |  |  | 17 | 2 | 1 | $B \rightarrow A$ | - | - | 1 |  | R | - |
| Test, Zero or Minus | TST |  |  |  |  |  |  | 6D | 6 | 2 | 7D | 6 | 3 |  |  |  | M - 00 | - | - |  | 1 | R | R |
|  | TSTA |  |  |  |  |  |  |  |  |  |  |  |  | 4D | 2 | 1 | A. 00 | $\bullet$ | - |  | 1 | R | R |
|  | TSTB |  |  |  |  |  |  |  |  |  |  |  |  | 5D | 2 | 1 | B - 00 | $\bigcirc$ | $\bigcirc$ | 1 | 1 | R | R |

The condition code register notes are listed after Table 12

TABLE 11 - JUMP AND BRANCH INSTRUCTIONS

| Operations | Mnemonic | Direct |  | Relative |  |  | Index |  |  | Extnd |  |  | Inherent |  |  | Branch Test | Cond. Code Reg. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | H | 1 | $\begin{array}{\|l\|} \hline 3 \\ \hline \mathbf{N} \\ \hline \end{array}$ |  |  |  | $\begin{array}{\|l\|} \hline 2 \\ \hline z \\ \hline \end{array}$ | $\begin{aligned} & 1 \\ & \hline \mathrm{v} \\ & \hline \end{aligned}$ |  |  |  |  | O |
|  |  | OP | \# |  |  |  | OP |  | \# |  |  |  | OP | - | \# |  | OP | - |  |  | OP | - \# |
| Branch Always | BRA |  |  | 20 | 3 | , |  |  |  |  |  |  |  |  |  | None | - | - | - | - | - |  | ${ }^{-1}$ |
| Branch Never | BRN |  |  | 21 | 3 | 2 |  |  |  |  |  |  |  |  |  | None | - | - | - | - | - |  | - |
| Branch If Carry Clear | BCC |  |  | 24 | 3 | 2 |  |  |  |  |  |  |  |  |  | $\mathrm{C}=0$ | - | $\bullet$ | - | - | - |  | - |
| Branch If Carry Set | BCS |  |  | 25 | 3 | 2 |  |  |  |  |  |  |  |  |  | C $=1$ | - | - | - | - | - |  | - |
| Branch If = Zero | BEO |  |  | 27 | 3 | 2 |  |  |  |  |  |  |  |  |  | Z $=1$ | - | - | - | - | - |  | - |
| Branch If $\geq$ Zero | BGE |  |  | 2C | 3 | 2 |  |  |  |  |  |  |  |  |  | $N \oplus \mathrm{~V}=0$ | - | - | - | - | - |  | $\bigcirc$ |
| Branch If $\gg$ Zero | BGT |  |  | 2E | 3 | 2 |  |  |  |  |  |  |  |  |  | $\mathrm{Z}+(\mathrm{N} \oplus \mathrm{V})=0$ | $\bullet$ | - | - | - | - |  | - |
| Branch If Higher | BHI |  |  | 22 | 3 | 2 |  |  |  |  |  |  |  |  |  | $\mathrm{C}+2=0$ | - | - |  | - | - |  | - |
| Branch If Higher or Same | BHS |  |  | 24 | 3 | 2 |  |  |  |  |  |  |  |  |  | C $=0$ | - | $\bullet$ |  | - | - |  | $\bullet$ |
| Branch If $\leq$ Zero | BLE |  |  | 2F | 3 | 2 |  |  |  |  |  |  |  |  |  | $\mathrm{Z}+(\mathrm{N} \oplus \mathrm{V})=1$ | $\bullet$ | - |  | - | - |  | - |
| Branch If Carry Set | BLO |  |  | 25 | 3 | 2 |  |  |  |  |  |  |  |  |  | $\mathrm{C}=1$ | - | - |  | - | - |  | 0 |
| Branch If Lower Or Same | BLS |  |  | 23 | 3 | 2 |  |  |  |  |  |  |  |  |  | $C+2=1$ | - | - | - | - | - |  | - |
| Branch if < Zero | BLT |  |  | 2D | 3 | 2 |  |  |  |  |  |  |  |  |  | $\mathrm{N} \oplus \mathrm{V}=1$ | - | - | - | - | - |  |  |
| Branch If Minus | BMI |  |  | 2B | 3 | 2 |  |  |  |  |  |  |  |  |  | $\mathrm{N}=1$ | - | - | - | - | - |  |  |
| Branch If Not Equal Zero | BNE |  |  | 26 | 3 | 2 |  |  |  |  |  |  |  |  |  | Z-0 | - | - | - | - | - |  |  |
| Branch If Overflow Clear | BVC |  |  | 28 | 3 | 2 |  |  |  |  |  |  |  |  |  | $V=0$ | - | $\bullet$ | - | - | - |  |  |
| Branch If Overflow Set | BVS |  |  | 29 | 3 | 2 |  |  |  |  |  |  |  |  |  | $\mathrm{V}=1$ | $\bullet$ | - | - | - | - |  |  |
| Branch If Plus | BPL |  |  | 2A | 3 | 2 |  |  |  |  |  |  |  |  |  | $\mathrm{N}=0$ | - | $\bullet$ | - | - | - |  |  |
| Branch To Subroutine | BSR |  |  | 8 D | 6 | 2 |  |  |  |  |  |  |  |  |  |  | - | $\bullet$ | - | - | - |  |  |
| Jump | JMP |  |  |  |  |  | 6 E | 3 | 2 | 7 F | 3 | 3 |  |  |  | Operations | - | - | - | - | - |  |  |
| Jump To Subroutine | JSR | 9 D | 5 |  |  |  | AD | 6 | 2 | BO | 6 | 3 |  |  |  | Figure 21 | - | - | - | - | - |  |  |
| No Operation | NOP |  |  |  |  |  |  |  |  |  |  |  |  |  | 21 |  | - | - | - | - | $\bullet$ |  |  |
| Return From Interrupt | RTI |  |  |  |  |  |  |  |  |  |  |  |  | 381 | 01 |  |  | - | 1 | 1 | 7 |  |  |
| Return From Subroutine | RTS |  |  |  |  |  |  |  |  |  |  |  |  |  | 51 | See Special | - | $\bullet$ | 1 | - | $\bigcirc$ |  |  |
| Software Interrupt | SWI |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Operations <br> Figure 21 | - | S | $\bullet$ | $\bullet$ | - | - | - |
| Wait For Interrupt | WAI |  |  |  |  |  |  |  |  |  |  |  |  |  | 91 |  | - | - | - | - | - | - | - |

TABLE 12 - CONDITION CODE REGISTER MANIPULATION INSTRUCTIONS

| Operations | Inherent |  |  |  | Boolean Operation | Cond. Code Reg. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 5 | 4 | 3 | 2 | 1 | 0 |
|  | Mnemonic | OP | - | \# |  | H | 1 | N | 2 | v | C |
| Clear Carry | CLC | OC | 2 | 1 |  | O-C | $\bullet$ | $\bullet$ | - | - | $\bullet$ | R |
| Clear Interrupt Mask | CLI | OE | 2 | 1 | $0-1$ | - | R | - | - | - | $\bullet$ |
| Clear Overflow | CLV | OA | 2 | 1 | $0-\mathrm{V}$ | - | - | - | - | R | - |
| Set Carry | SEC | OD | 2 | 1 | 1-c | - | - | - | - | $\bullet$ | S |
| Set Interrupt Mask | SEI | OF | 2 | 1 | 1-1 | - | S | - | - | $\bullet$ | - |
| Set Overilow | SEV | OB | 2 | 1 | $1-V$ | $\bullet$ | - | - | - | S | $\bullet$ |
| Accumulator A - CCR | TAP | 06 | 2 | 1 | $A=C C R$ | 1 | 1 | 1 | 1 | 1 | 1 |
| CCR - Accumulator $A$ | TPA | 07 | 2 | 1 | $C C R-A$ | $\bullet$ | - | - | - | $\bullet$ | - |

## LEGEND

OPOperation Code (Hexadecimal) Number of MPU Cycles
MSP Contents of memory location pointed to by Stack Pointer
\# Number of Program Bytes

+ Artitmetic Plus
- Arithmetic Minus
- Boolean AND

X Arithmetic Multiply

+ Boolean Inclusive OR
(1) Boolean Exclusive OR
$\bar{M}$ Complement of $M$
- Transfer Into

0 Bit Zero
00 Byte : Zero

## CONDITION CODE SYMBOLS

H Half-carry from bit 3
I Interrupt mask
$N$ Negative (sign bit)
$z$ Zero (byte)
$\checkmark$ Overilow, 2 's complement
C Carry/Borrow from MSB
R Reset Always
S Set Always
1 Affected

- Not Affected

TABLE 13 - INSTRUCTION EXECUTION TIMES IN E CYCLES



FIGURE 21 - SPECIAL OPERATIONS
JSR, Jump to Subroutine


8SR Branch To Subroutine


RIS. Relurn from Subroulune


SWI. Sottware Interrupt


RTI, Return from Interrupt


JMP. Jump


Legend:
RTN = Address of next instruction in main program to be executed upon return from subroutint
RTN ${ }_{H}=$ Most significant byte of return address
RTN $_{L}=$ Least significant byte of return address
$\rightarrow=$ Stack pointer after execution
K = 8-bit unsigned value

## SUMMARY OF CYCLE-BY-CYCLE OPERATION

Table 14 provides a detailed description of the information present on the address bus, data bus, and the read/write $(R / \mathbb{W})$ line during each cycle of each instruction.

The information is useful in comparing actual with expected results during debug of both software and hardware as the program is executed. The information is categorized in
groups according to addressing mode and number of cycles per instruction. In general, instructions with the same addressing mode and number of cycles execute in the same manner. Exceptions are indicated in the table.

Note that during MPU reads of internal locations, the resultant value will not appear on the external data bus. High order byte refers to the most significant byte of a 16 -bit value.

TABLE 14 - CYCLE-BY-CYCLE OPERATION (Sheet 1 of 6)

| Address Mode \& Instructions | Cycles | Cycle \# | Address Bus | $\begin{aligned} & \mathrm{R} / \bar{W} \\ & \text { Line } \end{aligned}$ | Data Bus |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IMMEDIATE |  |  |  |  |  |
| ADC EOR <br> ADD LDA <br> AND ORA <br> BIT SBC <br> CMP SUB | 2 | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | Op Code Address <br> Op Code Address + 1 | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | Op Code <br> Operand Data |
| $\begin{aligned} & \text { LDS } \\ & \text { LDX } \\ & \text { LDD } \\ & \hline \end{aligned}$ | 3 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ | Op Code Address <br> Op Code Address + 1 <br> Op Code Address + 2 | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | Op Code <br> Operand Data (High Order Byte) <br> Operand Data (Low Order Byte) |
| CPX SUBD ADDD | 4 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$ | Op Code Address <br> Op Code Address + 1 <br> Op Code Address + 2 <br> Address Bus FFFF | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$ | Op Code <br> Operand Data (High Order Byte) Operand Data (Low Order Byte) Low Byte of Restatt Vector |

## DIRECT

| ADC EOR <br> ADD LDA <br> AND ORA <br> BIT SBC <br> CMP SUB | 3 | 2 3 | Op Code Address <br> Op Code Address + 1 <br> Address of Operand | $\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$ | Op Code Address of Operand Operand Data |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STA | 3 | 1 <br> 2 <br> 3 | Op Code Address <br> Op Code Address + 1 <br> Destination Address | $\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$ | Op Code <br> Destination Address <br> Data from Accumulator |
| $\begin{aligned} & \text { LDS } \\ & \text { LDX } \\ & \text { LDD } \end{aligned}$ | 4 | 1 2 3 4 | Op Code Address Op Code Address + 1 Address of Operand Operand Address + 1 | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$ | ```Op Code Address of Operand Operand Data (High Order Byte) Operand Data (Low Order Byte)``` |
| $\begin{aligned} & \hline \text { STS } \\ & \text { STX } \\ & \text { STD } \end{aligned}$ | 4 | 1 2 3 4 | Op Code Address <br> Op Code Address + 1 <br> Address of Operand <br> Address of Operand +1 | $\begin{aligned} & \hline 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$ | Op Code <br> Address of Operand <br> Register Data (High Order Byte) <br> Register Data (Low Order Byte) |
| CPX SUBD ADDD | 5 | 1 2 3 4 5 | Op Code Address <br> Op Code Address + 1 <br> Operand Address <br> Operand Address + 1 <br> Address Bus FFFF | $\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | Op Code Address of Operand Operand Data (High Order Byte) Operand Data (Low Order Byte) Low Byte of Restant Vector |
| JSR | 5 | 1 2 3 4 5 | Op Code Address <br> Op Code Address + 1 <br> Subroutine Address <br> Stack Pointer <br> Stack Pointer + 1 | $\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$ | Op Code <br> Irrelevant Data <br> First Subroutine Op Code <br> Return Address (Low Order Byte) <br> Return Address (High Order Byte) |

TABLE 14 - CYCLE-BY-CYCLE OPERATION (Sheet 2 of 6 )

| Address Mode \& Instructions | Cycles | Cycle \# | Address Bus | $\begin{aligned} & \mathbf{R} / \mathbf{W} \\ & \text { Line } \end{aligned}$ | Data Bus |
| :---: | :---: | :---: | :---: | :---: | :---: |
| EXTENDED |  |  |  |  |  |
| JMP | 3 | $\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \end{aligned}$ | Op Code Address <br> Op Code Address +1 <br> Op Code Address + 2 | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | Op Code Jump Address (High Order Byte) Jump Address (Low Order Byte) |
| ADC EOR <br> ADD LDA <br> AND ORA <br> BIT SBC <br> CMP SUB | 4 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ | Op Code Address <br> Op Code Address + 1 <br> Op Code Address + 2 <br> Address of Operand | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | Op Code <br> Address of Operand Address of Operand (Low Order Byte) Operand Data |
| STA | 4 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | Op Code Address <br> Op Code Address + 1 <br> Op Code Address + 2 <br> Operand Destination Address | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$ | Op Code <br> Destination Address <br> (High Order Byte) <br> Destination Address <br> (Low Order Byte) <br> Data from Accumulator |
| $\begin{aligned} & \text { LDS } \\ & \text { LDX } \\ & \text { LDD } \end{aligned}$ | 5 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$ | Op Code Address <br> Op Code Address + 1 <br> Op Code Address + 2 <br> Address of Operand <br> Address of Operand +1 | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | Op Code <br> Address of Operand <br> (High Order Byte) <br> Address of Operand <br> (Low Order Byte) <br> Operand Data (High Order Byte) <br> Operand Data (Low Order Byte) |
| $\begin{aligned} & \text { STS } \\ & \text { STX } \\ & \text { STD } \end{aligned}$ | 5 | $\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$ | Op Code Address <br> Op Code Address + 1 <br> Op Code Address +2 <br> Address of Operand <br> Address of Operand +1 | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | Op Code <br> Address of Operand <br> (Hıgh Order Byte) <br> Address of Operand <br> (Low Order Byte) <br> Operand Data (High Order Byte) <br> Operand Data (Low Order Byte) |
| ASL LSR <br> ASR NEG <br> CLR ROL <br> COM ROR <br> DEC TST <br> INC | 6 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | Op Code Address <br> Op Code Address + 1 <br> Op Code Address + 2 <br> Address of Operand <br> Address Bus FFFF <br> Address of Operand | $1$ | Op Code <br> Address of Operand <br> (High Order Byte) <br> Address of Operand (Low Order Byte) Current Operand Data Low Byte of Restart Vector New Operand Data |
| $\begin{aligned} & \text { CPX } \\ & \text { SUBD } \\ & \\ & \text { ADDD } \end{aligned}$ | 6 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \end{aligned}$ | Op Code Address <br> Op Code Address + 1 <br> Op code Address + 2 <br> Operand Address <br> Operand Address + 1 <br> Address Bus FFFF | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | Op Code <br> Operand Address <br> (High Order Byte) <br> Operand Address <br> (Low Order Byte) <br> Operand Data (High Order Byte) <br> Operand Data (Low Order Byte) <br> Low Byte of Restart Vector |
| JSR | 6 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | Op Code Address <br> Op Code Address + 1 <br> Op Code Address + 2 <br> Subroutine Starting Address <br> Stack Pointer <br> Stack Pointer - 1 | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | Op Code <br> Address of Subroutine <br> (High Order Byte) <br> Address of Subroutine <br> (Low Order Byte) <br> Op Code of Next Instruction <br> Return Address <br> (Low Order Byte) <br> Return Address <br> (High Order Byte) |

TABLE 14 - CYCLE-BY-CYCLE OPERATION (Sheet 3 of 6)

| Address Mode \& Instructions | Cycles | $\begin{gathered} \text { Cycle } \\ \# \\ \hline \end{gathered}$ | Address Bus | $\begin{array}{\|c} \mathbf{R} / \bar{W} \\ \text { Line } \end{array}$ | Data Bus |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INDEXED |  |  |  |  |  |
| JMP | 3 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ | Op Code Address Op Code Address + 1 Address Bus FFFF | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$ | Op Code Offset <br> Low Byte of Restart Vector |
| ADC EOR <br> ADD LDA <br> AND ORA <br> BIT SBC <br> CMP SUB | 4 | $\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$ | Op Code Address <br> Op Code Address + 1 <br> Address Bus FFFF <br> Index Register Plus Offset | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | Op Code <br> Offset <br> Low Byte of Restart Vector <br> Operand Data |
| STA | 4 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | Op Code Address <br> Op Code Address + 1 <br> Address Bus FFFF <br> Index Register Plus Offset | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & \hline \end{aligned}$ | Op Code Offset Low Byte of Restart Vector Operand Data |
| $\begin{aligned} & \text { LDS } \\ & \text { LDX } \\ & \text { LDD } \end{aligned}$ | 5 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$ | Op Code Address <br> Op Code Address + 1 <br> Address Bus FFFF <br> Index Register Plus Offset <br> Index Register Plus Offset +1 | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$ | Op Code <br> Offset <br> Low Byte of Restart Vector <br> Operand Data (High Order Byte) <br> Operand Data (Low Order Byte) |
| $\begin{aligned} & \hline \text { STS } \\ & \text { STX } \\ & \text { STD } \end{aligned}$ | 5 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$ | Op Code Address <br> Op Code Address + 1 <br> Address Bus FFFF <br> Index Register Plus Offset <br> Index Register Plus Offset +1 | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | Op Code <br> Offset <br> Low Byte of Restart Vector Operand Data (High Order Byte) Operand Data (Low Order Byte) |
| ASL LSR <br> ASR NEG <br> CLR ROL <br> COM ROR <br> DEC TST (1) <br> INC | 6 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | Op Code Address Op Code Address + 1 Address Bus FFFF Index Register Plus Offset Address Bus FFFF Index Register Plus Offset | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$ | Op Code Offsel <br> Low Bvte of Restart Vector Current Operand Data Low Byte of Restart Vector New Operand Data |
| CPX SUBD ADDD | 6 | $\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & \hline \end{aligned}$ | Op Code Address <br> Op Code Address + 1 <br> Address Bus FFFF <br> Index Register + Offset <br> Index Register + Offset + 1 <br> Address Bus FFFF | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | Op Code Offset Low Byte of Restart Vector Operand Data (High Order Byte) Operand Data (Low Order Byte) Low Byte of Restart Vector |
| JSR | 6 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & \hline \end{aligned}$ | Op Code Address <br> Op Code Address + 1 <br> Address Bus FFFF <br> Index Register + Offset <br> Stack Pointer <br> Stack Pointer - 1 | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | Op Code <br> Offset <br> Low Byte of Restart Vector <br> First Subroutine Op Code <br> Return Address (Low Order Byte) <br> Return Address (High Order Byte) |

TABLE 14 - CYCLE-BY-CYCLE OPERATION (Sheet 4 of 6 )

|  <br> Instructions | Cycles | Cycle <br> $\#$ | Address Bus | R/ $\overline{\mathbf{W}}$ <br> Line | Data Bus |
| :---: | :---: | :---: | :---: | :---: | :---: |

## INHERENT

| ABA DAA SEC ASL DEC SEI ASR INC SEV CBA LSR TAB CLC NEG TAP CLI NOP TBA CLR ROL TPA CLV ROR TST COM SBA | 2 | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | Op Code Address <br> Op Code Address +1 | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & \text { Op Code } \\ & \text { Op Code of Next Instruction } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A B X$ | 3 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ | Op Code Address Op Code Address +1 Address Bus FFFF | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | Op Code \|rrelevent Data Low Byte of Restart Vector |
| $\begin{aligned} & \hline \text { ASLD } \\ & \text { LSRD } \end{aligned}$ | 3 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ | Op Code Address Op Code Address +1 Address Bus FFFF | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | Op Code Irrelevant Data <br> Low Byte of Restant Vector |
| $\begin{aligned} & \text { DES } \\ & \text { INS } \end{aligned}$ | 3 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ | Op Code Address <br> Op Code Address +1 <br> Previous Register Contents | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | Op Code <br> Op Code of Next Instruction Irrelevant Data |
| $\begin{aligned} & \hline \operatorname{INX} \\ & \mathrm{DEX} \end{aligned}$ | 3 | $\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$ | Op Code Address <br> Op Code Address +1 <br> Address Bus FFFF | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | Op Code <br> Op Code of Next Instruction Low Byte of Restart Vector |
| $\begin{aligned} & \text { PSHA } \\ & \text { PSHB } \end{aligned}$ | 3 | $\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \end{aligned}$ | Op Code Address <br> Op Code Address +1 <br> Stack Pointer | $\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$ | Op Code <br> Op Code of Next Instruction Accumulator Data |
| TSX | 3 | 1 2 3 | Op Code Address <br> Op Code Address +1 <br> Stack Pointer | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | Op Code <br> Op Code of Next instruction Irrelevant Data |
| TXS | 3 | 1 2 3 | Op Code Address Op Code Address +1 Address Bus FFFF | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | Op Code <br> Op Code of Next Instruction Low Byte of Restart Vector |
| $\begin{aligned} & \text { PULA } \\ & \text { PULB } \end{aligned}$ | 4 | 1 <br> 2 <br> 3 <br> 4 | Op Code Address <br> Op Code Address +1 <br> Stack Pointer <br> Stack Pointer +1 | $\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$ | Op Code <br> Op Code of Next Instruction Irrelevant Data Operand Data from Stack |
| PSHX | 4 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$ | Op Code Address <br> Op Code Address +1 <br> Stack Pointer <br> Stack Pointer - 1 | $\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | Op Code <br> Irrelevant Data <br> Index Register (Low Order Byte) <br> Index Register (High Order Byte) |
| PULX | 5 | $\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$ | Op Code Address Op Code Address +1 Stack Pointer Stack Pointer +1 Stack Pointer +2 | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | Op Code <br> Irrelevant Data <br> Irrelevant Data <br> Index Register (High Order Byte) <br> Index Register (Low Order Byte) |

TABLE 14 - CYCLE-BY-CYCLE OPERATION (Sheet 5 of 6 )

|  <br> Instructions | Cycles | Cycle <br> $\#$ | Address Bus | $R / \overline{\bar{W}}$ <br> Line | Data Bus |
| :---: | :---: | :---: | :---: | :---: | :---: |

## INHERENT

| RTS | 5 | $\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$ | Op Code Address <br> Op Code Address +1 <br> Stack Pointer <br> Stack Pointer +1 <br> Stack Pointer +2 | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | Op Code Irrelevant Data Irrelevant Data Address of Next Instruction (High Order Byte) Address of Next Instruction (Low Order Byte) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| WAI | 9 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$ | Op Code Address <br> Op Code Address +1 <br> Stack Pointer <br> Stack Pointer - 1 <br> Stack Pointer -2 <br> Stack Pointer - 3 <br> Stack Pointer - 4 <br> Stack Pointer -5 <br> Stack Pointer -6 | $\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | Op Code <br> Op Code of Next Instruction <br> Return Address (Low Order Byte) <br> Return Address <br> (High Order Byte) <br> Index Register (Low Order Byte) <br> Index Register (High Order Byte) <br> Contents of Accumulator $A$ <br> Contents of Accumulator B <br> Contents of Cond Code Register |
| MUL | 10 | $\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{gathered}$ | Op Code Address Op Code Address +1 Address Bus FFFF | $\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | Op Code Irrelevant Data Low Byte of Restart Vector |
| RTI | 10 | 1 <br> 2 <br> 3 <br> 4 <br> 5 <br>  <br> 6 <br> 7 <br> 8 <br> 9 <br> 10 | Op Code Address Op Code Address +1 Stack Pointer Stack Pointer +1 <br> Stack Pointer +2 <br> Stack Pointer +3 <br> Stack Pointer +4 <br> Stack Pointer +5 <br> Stack Pointer +6 <br> Stack Pointer +7 | 1 1 1 1 1 1 1 1 1 1 | Op Code <br> Irrelevant Data <br> Irrelevant Data <br> Contents of Cond Code Reg <br> from Stack <br> Contents of Accumulator B <br> from Stack <br> Contents of Accumulator A <br> from Stack <br> Index Register from Stack <br> (High Order Byte) <br> Index Register from Stack <br> (Low Order Byte) <br> Next Instruction Address from <br> Stack (High Order Byte) <br> Next Instruction Address from <br> Stack (Low Order Byte) |
| SWI | 12 | $\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 4 \\ \\ \hline 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ \\ 12 \end{gathered}$ | Op Code Address <br> Op Code Address +1 <br> Stack Pointer <br> Stack Pointer - 1 <br> Stack Pointer - 2 <br> Stack Pointer - 3 <br> Stack Pointer -4 <br> Stack Pointer -5 <br> Stack Pointer -6 <br> Stack Pointer - 7 <br> Vector Address FFFA (Hex) <br> Vector Address FFFB (Hex) | $\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$ | Op Code <br> Irrelevant Data <br> Return Address (Low Order Byte) <br> Return Address <br> (High Order Byte) <br> Index Register (Low Order Byte) <br> Index Register (High Order Byte) <br> Contents of Accumulator A <br> Contents of Accumulator $B$ <br> Contents of Cond. Code Register <br> Irrelevant Data <br> Address of Subroutine <br> (High Order Byte) <br> Address of Subroutine <br> (Low Order Byte) |

TABLE 14 - CYCLE-BY-CYCLE OPERATION (Sheet 6 of 6)

| Address Mode \& Instructions | Cycles | Cycle <br> \# | Address Bus | R/W <br> Line | Date Bus |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RELATIVE |  |  |  |  |  |
| BCC BHT BNE BLO BCS BLE BPL BHS BEO BLS BRA BRN BGE BLT BVC BGT BMT BVS | 3 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ | Op Code Address <br> Op Code Address +1 <br> Address Bus FFFF | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | Op Code <br> Branch Offset <br> Low Byte of Restart Vector |
| BSR | 6 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | Op Code Address <br> Op Code Address +1 <br> Address Bus FFFF <br> Subroutine Starting Address <br> Stack Pointer <br> Stack Pointer - 1 | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$ | Op Code <br> Branch Offset <br> Low Byte of Restart Vector <br> Op Code of Next Instruction <br> Return Address (Low Order Byte) <br> Return Address (High Order Byte) |

## MECHANICAL DATA



NOTES:

1. POSITIONAL TOLERANCE OF LEADS (D),

SHALL BE WITHIN $0.25 \mathrm{~mm}(0.010)$ AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.


|  | MILLIMETERS |  | INCHES |  |
| :---: | :---: | :---: | :---: | :---: |
|  | MIN | MAX | MIN | MAX |
|  | 50.29 | 51.31 | 1.980 | 2.020 |
| B | 14.63 | 15.49 | 0.576 | 0.610 |
| C | 2.79 | 4.32 | 0.110 | 0.170 |
| D | 0.38 | 0.53 | 0.015 | 0.021 |
| F | 0.76 | 1.52 | 0.030 | 0.060 |
| G | 2.54 | BSC | 0.100 |  |
| BSC |  |  |  |  |
| J | 0.20 | 0.33 | 0.008 | 0.013 |
| K | 2.54 | 4.57 | 0.100 | 0.180 |
| L | 14.99 | 15.65 | 0.590 | 0.616 |
| M | - | 100 | - | 100 |
| N | 1.02 | 1.52 | 0.040 | 0.060 |

## NOTES:

1. DIMENSION -A. IS DATUM.
2. POSITIONAL TOLERANCE FOR LEADS:

| -0.25 ( 0.010$)$ | $(0) \mid$ | T |
| :--- | :--- | :--- |

3. T-is seating plane.
4. DIMENSION "L" TO CENTER OF LEADS When formed parallel.
5. Dimensioning and tolerancing

PER ANSI Y14.5, 1973.

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assurne any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.


[^0]:    *Using maximum clock rate

